مرجع فایل های تخصصی

وبلاگ برای دسترسی هم وطنان به فایل های مورد نیاز آنها در تمامی زمینه های علمی، پزشکی، فنی و مهندسی، علوم پایه، علوم انسانی و ... طراحی گردیده است.

مرجع فایل های تخصصی

وبلاگ برای دسترسی هم وطنان به فایل های مورد نیاز آنها در تمامی زمینه های علمی، پزشکی، فنی و مهندسی، علوم پایه، علوم انسانی و ... طراحی گردیده است.

معرفی و دانلود فایل کامل مقاله بررسی متالورژی پودر

مقاله بررسی متالورژی پودر در 48 صفحه ورد قابل ویرایش
دسته بندی مواد و متالوژی
فرمت فایل doc
حجم فایل 41 کیلو بایت
تعداد صفحات فایل 48
مقاله بررسی متالورژی پودر

فروشنده فایل

کد کاربری 6017

مقاله بررسی متالورژی پودر در 48 صفحه ورد قابل ویرایش


فهرست مطالب

پیشگفتار ?
مقدمه ?
?-?- روشهای مکانیکی تولید پودر ??
?-?-?- روش ماشین کاری ??
?-?-?- روش خرد کردن ??
?-?-?- روش آسیاب ??
?-?-?- روش ساچمه ای کردن ??
?-?-?- روشدانه بندی باگرانوله کردن ??
?-?-?- روش اتمایز کردن ??
?-?-?- تولید پودر با روش مانسمن ??
تولید پودر به روش شیمیایی ??
?-?-? روش احیاء ??
?-?-? روش رسوب دهی ( ته نشین سازی از مایع) ??
?-?-?- روش تجزیه گرمایی ??
?-?-?- روش رسوب از فاز گازی ??
?-?-?- روش خوردگی مرزدانه ها ??
تولید پودر به روش الکترولیتی ??
تولید پودر به روش پاشش ??
?-?-?- پاشش با گاز ??
?-?-?- پاشش آبی ??
?-?-?-پاشش گریز از مرکز ??
?-? : ریخته گری دوغابی یا Slip Casting 29
تراکم با سیستم چند محوری ??
تراکم در قالبها ??
?-?-?- متراکم کردن با لرزاندن ( ویبره ای ) ??
?-?-?- متراکم کردن سیکلی ( نیمه مداوم) ??
?-?-?- متراکم کردن به روش ایزواستاتیک ??
?-?-?- متراکم کردن با نورد ??
?-? : تزریق در قالب یا injection molding 42
مواد آلی افزودنی ??
مخلوط کردن ذرات پودر با مواد آلی ??
نحوه تزریق در قالب ??
محدودیتهای روش تزریق ??
کاربرد کاربید سمانته شده ??
II- الماس مصنوعی ??
تولید ابزار از الماس مصنوعی ??
III- تولید یاقاقانهای خود روغن کار ??
آنالیز شیمیایی یاتاقانهای خود روغن کار ??
یاتاقانهای برنزی زینتر شده ??
iv- تولید پودر برای روکش الکترودها ??
روکش الکترودها ??
کنترل خواص سرباره ??
کیتفیت رسوب جوش ??
قابلیت چسبندگی با اکستروژن ??


پیشگفتار:

یکی از شاخه‌های علم متالورژی که دز سالهای اخیر رشد زیادی یافته است. متالورژی پودر است. البته قدمت تولید قطعات با پودر به پنج هزار سال و بیشتر می رسد. یکی دیگر از دلایل توسعه متالورژی پودر این است که در روش مزبور فلز تلف شده به مراتب کمتر از سایر روشهاست و حتی می توان گفت وجود ندارد. سرمایه گذاری در صنعت متتالورژی پودر نیز،‌کمتر از سرمایه گذاری برای روشهای کلاسیک ساخت قطعات است. زیرا در مرحله هم جوشی ، درجه حرارت لازم کمتر از درجه حرارت ذوب فلزات است و در نتیجه، کوده های مورد احتیاح ارزانتر اند.

دامنه استفاده از متالورژی پودر بسیار متنوع و گسترده بوده و در این رابطه کافی است به زمینه هایی همچون تولید رشته های لامپها، بوش های خود روانساز، متعلقات گیربکس اتومبیل، اتصالات الکتریکی، مواد ضد سایش قطعات توربین و آمالگم های دندانپزشکی اشاره شود. علاوه بر آن پودر فلزات در موارد و کاربردهایی چون صنایع رنگ سازی مدارهای چاپی، آردهای غنی شده مواد منفجره، الکترود های جوشکاری، سوخت راکت ها، جوهر چاپ، باطری الکتریکی قابل شارژ، لحیم کاری و کاتالیزورها مورد استفاده قرار می گیرند.

متالورژی پودر در ابتدا فلزات معمول، همچون مس و آهن شروع شد ولی لانه استفاده از عمل آن به فلزات غیر دیگر نیز سرایت کرد. کاربردهای جدید تری برای متالورژی پودر به دنبال داشت. بطوریکه از آغاز دهه 1940 بسیاری از قطعات فلزات غیر معمول از طریع این تکنولوژی تهیه شدند. در این گروه مواد می توان از فلزات دیر گداز مانند نایوبیم، تنگستن، مولیبدن، زیر کنیم، تیتانیم، رنیم و آلیاژهای آنها نام برد. همچنین تعدادی از مواد هسته ای و ترکیبات الکتریکی و مغناطسسی نیز با تکنیک های متالورژی پودر تهیه شدند. هر چند موفقیت اولیه متالورژی پودر بیشتر مدیون مزایای اقتصادی آن است. ولی در سالهای اخیر ساخت قطعاتی که تولید آنها با روشهای دیگر مشکل می باشد در گسترش این تکنولوژی سهم چشمگیری داشته است. انتظار می رود که این عوامل در جهت بسط متالورژی پودر و ابداع کاربردهای آتی آن دست به دست هم داده و دست آودرهای تکنولوژیکی تازه ای را به ارمغان آورند. تداوم رشد متالورژی پودر را میتوان به عوامل پنجگانه زیر وابسته دانست:

الف) تولید انبوه قطعات سازه ای دقیق و با کیفیت بالا که معمولاً‌بر بکارگیری آلیاژهای آهن مبتنی می باشند.

ب ) دستیابی به قطعاتی که فرایند تولید آنها مشکل بوده و باید کاملاً فشرده و دارای ریز ساختار یکنواخت ( همگن) باشند.

پ ) ساخت آلیاژهای مخصوص،‌عمدتاً مواد مرکب محتوی فازهای مختلف که اغلب برای شکل دهی نیاز به بالا تولید می شوند.

ت) مواد غیر تعادلی از قبیل آلیاژهای آمورف و همچنین آلیاژ های ناپایدار.

ث ) ساخت قطعات پیچیده که شکل و یا ترکیب منحصر به فرد و عیر معمول دارند

متالورژی پودر روز به روز گسترش بیشتری یافته و بر میزان پودر تولیدی به طور پیوسته افزوده، بطوریکه پودر آهن حمل شده از آمریکا از سال 1960 تا 1978 میلادی به ده برابر افزایش یافته است. هر چند در سالهای اخیر آهنگ رشد این تکنولوژی چندان پیوسته نبوده، ولی مجموعه شواهد دلالت بر گستردگی بیشتر آن، در مقایسه با روشهای سنتی قطعه سازی دارد. باز خوردهای دریافت شده از مهندسین طراح نشان می دهد که هر چه دانش ما در متالورژی پودر افزودن تر می شود، دامنه کاربرد این روش نیز گسترش بیشتری می یابد. اغلب دست آوردهای نوین این زمینه صنعتی بر قابلیت آن در ساخت،‌ مقرون به صرفه قطعات با شکل و ابعاد دقیق مبتنی است.


مقدمه

در قرن بیستم و در سالهای اخیر، تکنیک متالورژی پودر بطور جدی تر،‌ مورد توجه قرار گرفته و جای خود را به اندازه کافی در صنعت باز کرده است بطوری که در حال حاضر می توان آن را به عنوان یکی از تکنیک های جدید متالورژی به حساب آورد. البته قدمت تولید قطعات با پودر به بیش از پنج هزار سال پیش می رسد، درآن زمان کوره هایی که بتوانند حرارت لازم را برای ذوب فلزات ایجاد کند، وجود نداشتند. روش معمول، احیا سنگ معدن با ذغال چوب بود و محصولی که به دست می آمد نوعی فلز اسفنجی بود که در حالت گرم با چکش کاری امکان شکل دهی مطلوب داشت.

هم اکنون، ستونی آهنی با وزنی حدود شش تن در شهر دهلی وجود دارد که در هزار وششصد سال پیش با همین روش تهیه شده است . در اواخر قرن هیجدهم و لاستون

( wollaston ) کشف کرد که می توان پودر فلز پلاتین را که در طبیعت به صورت آزاد شناخته شده بود، پس از تراکم و حرارت دادن، درحالت گرم با چکش کاری شکل داد. ولاستون جزئیات روش خود را درسال 1829 منتشر کرد و اهمیت فاکتورهای نظیر اندازه دانه ها، متراکم کردن پودر با وزن مخصوص بالا و اکتیویته سطحی و غیره.. را توضیح داد.

همزمان با ولاستون وبطور جداگانه متالوریست بر جسته روسی پیومتر زابولفسکی

( pyotrsobolevsky ) در یال 1826، از این روش برای ساختن سکه ها و نشان ها از جنس پلاتین استفاده کرد. در نیمه دوم قرن نوزدهم، متخصصین متالورژی به روشهای روب فلزات با نقطه روب بالا دست یافتند و همین مسئله باعث شد که مجدداً استفاده از متالورژی پودر محدود شود،‌ هر چند تقاضا برای تولید قطعاتی مانند تنگستن از طریق متالورژی پودر فلز، تلف شده به مراتب کمتر از سایر روشهاست و حتی می توان گفت وجود ندارد. دراین مورد، بطوری که تجربه نشان می دهد،‌ هر یک کیلوگرم محصول ساخته شده باروش متالورژی پودر، معادل است با چند کیلو گرم محصول ساخته شده با سایر روشهای شکل دادن نظیر برش و تراشکاری، چون در روشهایی نظیر تراشکاری مقادیر زیادی از فلزبه صورت براده در می آید که تقریباً غیر قابل استفاده است. علاوه بر آن یک کیلو گرم از مواد ساخته شده بوسیله روشهای متالورژی پودر می تواند کار ده ها کیلو گرم فولاد آلیاژی ابزار را انجام دهد.

3-1- فصل سوم:

تولید پودر به روش الکترولیتی :

تحت شرایط مناسب می توان پودر فلزات را بر روی کاتد سلول الکترولیز رسوب داد. پودر خالص فلزات تیتا نیوم، مس،آهن و برلیم نمونه هایی از پودرهای تولید شده با روش اخیر می باشد.

انحلال در سطح آند و ایجاد رسوب پودری در کاند انجام می گیرد. انتقال یونها در الکترولیت منجر به تولید شد پودری با درجه خلوص بالا در سطح کاتد می شود که پس از جمع آوری،‌ آسیاب و نهایتاً برای کاهش سختی کرنشی ایجاد شده در آن تحت عمل آنیلینگ قرار می گیرد. نیروی محرکه تولید پودر در این روش ولتاژ خارجی اعمال شده بردو قطب الکترولیز بوده و جمع آوری پودر از سطح کاتد با نشستن سطح آن و خشک کردن رسوب حاصله عملی می شود. پودر تولید شده به روش الکترولیتی معمولاً شاخه ای و یا اسفنجی بوده و ویژگیهای آن تابع شرایط حمام درحین رسوب و همچنین عملیات بعدی انجام گرفته بر روی پودر می باشد.

بالا بودن دانسیته جریان خارجی،‌ کم بودن غلظت یونی در محلول الکترولیت و اسیدی بودن آن و همچنین افزایش مواد کلوئیدی به حمام به تولید پودر اسفنجی کمک می کند. دمای حمام در شرایط کار در حدود 60 درجه سانتیگراد بوده و از الکتولیت با گران و سیکوزیه بالا استفاده می شود. از بهم زدن الکترولیت نیز پرهیز می شود تا رسوب ایجاد شده بر سطح کاتد حتی الامکان باشد.

هر چند الکترولیز برای تولید پودرهای با درجه خلوص بالا روشی شناخته شده می باشد ولی انجام آن مشکلاتی را نیز به همراه دارد. ترکیب شیمیایی حمام الکترولیت بسیار حائز اهمیت بوده و ناخالصی های موجود در آن می تواند رسوب پودر بر سطح کاتد را با وقفه مواجه سازد. علاوه بر این روش مذکر تنها برای تولید پودرهای فلزی( غیر آلیاژی ) قابل استفاده می باشد. همچنین تمیز کردن و آماده سازی پودر تولید شده برای فرایند های بعدی می تواند هزینه تولید را به میزان زیادی افزایش دهد.


4-1- فصل چهار:

تولید پودر به روش پاشش

4-1-1- پاشش با گاز

بکارگیری هوا، ازت، هلیم و آرگون بعنوان سیالات متلاشی کننده جریان مذاب در تولید پودر فلزات و آلیاژها از کار آیی چشمگیری برخوردار می باشد. جریان فلز ( آلیاژ) مذاب در اثر برخورد با گاز منبسط شده ای که از یک افشانک خارج می گردد متلاشی شده و در مراحل بعدی به دانه های پودر کروی تبدیل می گردد. پاشش گازی برای تولید پودر سوپر آلیاژ ها و مواد پر آلیاژ روشی ایده آل و شناخته شده می باشد.

طرحهای گوناگون مورد استفاده تابعی از مکانیزم تغذیه فلز مذاب و پیچیدگی تجهیزات ذوب و جمع آوری پودر می باشد، ولی ویژگی مشترک همه این روشها انتقال انرژی از یک گاز سریعاً منبسط شونده به جریان مذاب و تبدیل آن به دانه های پودر است. افشاننده های با دمای کم دارای طرح افقی مطابق شکل11 می باشند. و گاز دارای سرعت بالا که از یک افشانک خارج می گردد فلز مذاب را به منطقه انبساط گاز می کشاند. سرعت زیاد گاز باعث تولید جریانی از قطرات ریز مذاب شده که در حین حرکت در محفظه جمع آوری پودر سرد و منجمد می گردند.

روش پاشش برای فلزات با نقطه ذوب بالا در محفظه بسته ای که با گاز خنثی پر شده انجام می گیرد تا از اکسید اسیدن دانه های پودر جلوگیری شود. اندازه محفظه ( تانک) پاشش باید به نحوی انتخاب شود که دانه های پودر پیش از برخورد به دیواره های آن بصورت جامد در آیند. در چنین سیستمهایی مذاب در کوره القایی تحت خلاء، تهیه و به افشانک ریخته می شود. دمای فوق ذوب تا حد قابل ملاحظخ ای بابد بجای افشانک مدور می توان از افشانکهای چند گانه که بصورت محیطی جریان مذاب را احاطه کرده اند، استفاده نمود. گاز پاشش مذاب باید از محفظه تولید پودر تخلیه شود تا از ایجاد فشار جلوگیری شود.

در حالیکه در سیستم پاشش افقی اینکار بوسیله فیلتر تعبیه شده در بدنه دستگاه، که نقش جمع آوری پودر را نیز بعهده دارد، انجام می شود. درتجهیزات پاشش قائم گاز بکار گیری سیلکون، تخلیه و در صورت نیاز بازیابی شده و دانه های ریز پودر نیز از آن جدا می شوند.

پاشش گازی را می توان تحت شرایط کاملاً خنثی انجام داد. از این تولید پودر های پر آلیاژ با ترکیب آلیاژی دست نخورده ( کنترل شده ) با این روش امکان پذیر می باشد. دانه های پودر حاصل از فرایند، کروی و توزیع دانه بندی آنها نسبتاً گسترده می باشد متغیرهای کنترل کننده فرایند نسبتاً زیاد و شامل نوع گاز، سرعت گاز، شکل افشانک و دمای گاز می باشد.


2-4-1- پاشش آبی

پاشش آب متدوالترین فرایند برای تولید پودر فلزات و آلیاژ های با نقطه ذوب پایینتر از 1600 درجه سانتیگراد می باشد. جهت دهی آب به سمت مسیر مذاب را می توان با استفاده از افشانک حلقوی، چند تایی و یا منفرد عملی نمود. این فرایند مشابه پاشش گازی می باشد. با این تفاوت که سرعت انجماد در این مورد بیشتر و ویژگیهای عامل متلاشی کننده مذاب نیز با حالت پیشین متفاوت می باشد.

در پاشش آبی شکل دانه های پودر ، به علت انجماد سریعتر در مقایسه با روش گازی، نامنظم تر بوده و بعلاوه سطح دانه ها ناصاف تر و اکسید اسیون آنها نیز بیشتر است. با توجخ به انجماد نسبتاً سریع دانه ها کنترل شکل آنها در صورتی امکان پذیر خواهد بود که دمای فوق ذوب در حد قابل ملاحظه ای بالا شد.

3-4-1-پاشش گریز از مرکز

نیاز به کنترل اندازه دانه های پودر و همچنین اشکالات موجود در تولید پودر فلزات فعال منجر به توسعه و بکارگیری این روش پاشش شده است. در افشانک مختلفی که بر مبنای اعمال نیروی گریز از مرکز بر مذاب بنا شده اند، نیرو باعث پرتاب قطرات مذاب و انجماد آنها بصورت پودر می گردد. یکی از نمونه های بکار گیری این روش، روش الکترود چرخان است که در تولید پودر فلزات فعال مانند زیر کنیم، وم همچنین سوپر آلیاژ ها بکار گرفته می شود،‌

1-2 : ریخته گری دوغابی یا Slip Casting

از این روش بطور وسیع برای سرامیکها و در مقیاس کمتر برای فلزات استفاده می شود. مواد ذیل برای ریخته گری لازم است:

1- پودر فلز یا سرامیک

2- مایع برای معلق نگهداشتن ذرات ( آب الکل)

3- مواد افزودنی برای جلو گیری از ته نشینی ذرات و چسبنده ها

دراین روش معمولاً‌ ذرات از 5 میکرو است ( از ذرات بزرگتر از 20 میکرومتر به علت سرعت ته نشین زیاد به ندرت استفاده می شود) با کمک افزودنی ها از ته نشینی ذرات بطور سریع جلو گیری بعمل می آید و عمل فشرده شدن در ریخته گری دوغابی یکنواخت می شود. مواد پس از آماده شدن در قالبی که از مواد جذب کننده مایع ( مثل پلاستر پاریس ) ساخته شده است رسخته می شود، معمولاً چندین ساعت وقت لازم است تا مایع از خلل و فرج مویی (‌ Capillary ) شکل قالب خارج شود و مواد متراکم شده از قالب بیرون آید.

قبل از زنیترتیگ قطعه متراکم شده باید خشک شود تا رطوبت بطور کامل از آن خارج و سپس زینتر شود. با این روش قطعات با تخلخل کم و یا زیاد می توان تولید کرد اما وزن مخصوص قطعه متراکم شده در این روش پایین است و در زنیترتیگ انقباض زیاد تری لازم است تا به وزن مخصوص بالاتر برسد.


اعتماد شما سرمایه ما

معرفی و دانلود فایل کامل گزارش کارآموزی بررسی آزمایشگاه متالورژی شرکت سایپا

گزارش کارآموزی بررسی آزمایشگاه متالورژی شرکت سایپا در 46 صفحه ورد قابل ویرایش
دسته بندی گزارش کارآموزی و کارورزی
فرمت فایل doc
حجم فایل 44 کیلو بایت
تعداد صفحات فایل 46
گزارش کارآموزی بررسی آزمایشگاه متالورژی شرکت سایپا

فروشنده فایل

کد کاربری 6017

گزارش کارآموزی بررسی آزمایشگاه متالورژی شرکت سایپا در 46 صفحه ورد قابل ویرایش


فهرست مطالب

مقدمه ?
سخت کاری سطحی ( موضعی ) فولاد ?
دسته بندی روشهای سخت کاری سطحی ?
سمانتاسیون با کربن دهی سطحی فولادها ?
کربن دهی گازی ?
گازهای کربن دهی ?
کوره ها ??
عمق نفوذ مؤثر و عمق نفوذ کل ??
کربن دهی مایع ??
مزایا و محدودیتهای کربن دهی مایع ??
کربن دهی جامد ??
روشهای اندازه گیری عمق نفوذ در قشر سمانته ??
سمانتاسیون به روش پلاسمایی ??
نیتراسیون ??
مکانیزم تشکیل قشر نیتروره ??
تأثیر نیتراسیون بر خواص مختلف فولاد ها ??
تصویر میکروسکوپی ??
روشهای مختلف عملیات نیتراسیون ??
مشخصات لایه نیتروره نسبت به لایه کربوره ??
مزایا و معایب نیتراسیون در مقایسه با سایر روشها ??
معایب نیتراسیون ??
پلاسما ??
کاربرد نیتراسیون پلاسما ??
میل لنگ ها ??
انواع چرخ دنده ها ??
مقایسه اقتصادی روشهای گازی و پلاسمایی ??
مزیت های روش گازی ??
مزیت های روش نیتراسیون پلاسمایی ??
فولادهای زنگ نزن ??
علائم DIN برای نامگذاری فولاها ??
نقشه خوانی قطعات ??
اطلاعات بدست آمده از روی نقشه در مورد فیلتر بنزین ??
شناسنامه قطعات ??
بررسی مهره ها و پیچ زانویی هواکش CLC 36
سختی گرفتن از پیچها ??
جمع بندی ??
نام قطعه بررسی شده: سگ دست Knucle ( پراید ) ??
نام قطعه بررسی شده : چشم شیشه شور ??
نام قطعه بررسی شده : دنده دوم پراید (GEAR – SEC 2N) 43
دستگاه کشش ??
بازدید از خط تولید پراید ??
تست های انجام شده بر روی پراید در خط تولید ??









در طی دوره ای که کارآموزی خود را در آزمایشگاه متالوژی شرکت سایپا گذراندم از تجربیات عملی و دانسته های علمی افراد زیر بهره مند شدم . تشکر و قدردانی فراوان را از زحمات :

v دکتر سلمانی

v مهندس طالبی

v مهندس بهمن پور

v مهندس میرکمالی

v مهندس دمیرچی

که در این مدت تمام تلاش خود را در جهت ارتقاء سطح علمی و افزایش تجربیات عملی اینجانب انجام داده اند ، می نمایم .


در دورة کارآموزی در شرکت سایپا واحد آزمایشگاه متالوژی علاوه بر کارهای عملی و تجربی انجام شده در این بخش ، برای هر کار آموز یک پروژه تحقیقاتی که مرتبط با کاربرد متالوژی در صنعت خودروسازی می باشد تعریف شد ، تا کارآموز در کنار کارهای عملی با انجام کارهای تحقیقاتی نیز آشنا شود.

پروژه اینجانب سخت کاری سطحی روشهای آن ، بویژه نیتراسیون پلاسمایی و کاربرد آن در صنعت خودرو می باشد که با راهنمایی و مساعدت دکتر سلمانی انجام گرفت .


سخت کاری سطحی ( موضعی ) فولاد



دو روش کاملاً متفاوت برای سختکاری سطحی یعنی فرآیندی که در آن سطح قطعات سخت شده و در مقابل سایش مقاوم باشند ولی در عین حال مغز آنها همچنان نرم و چقرمه باقی بماند وجود دارد . یکی اینکه فولادی را انتخاب کنیم که کربن کافی داشته و با گرم و سرد کردن سخت شود . در این فولاد ما می توان قسمتهای مورد نیاز را با گرم و سرد کردن سریع سخت کنیم . دوم اینکه فولادی را انتخاب کنیم که ذاتاً قادر نیست تا حد بالایی سخت شود . ولی با تغییر دادن ترکیبات شیمیایی لایه سطحی می توان لایه مذبور را سخت کرد .

دسته بندی روشهای سخت کاری سطحی :

روشهای سخت کاری سطحی از نقطه نظر عملی به چهار گروه عمده شامل :

1 ـ کربن دهی ( کربو رایزینگ )

2 ـ کربن و ازت دهی ( کربو نیترایدینگ )

3 ـ ازت دهی ( نیترایدینگ )

4 ـ ازت دهی و کربن دهی ( نیتروکربورایزینگ )

تقسیم می شوند .


سمانتاسیون با کربن دهی سطحی فولادها :

برای تعداد زیادی از محصولات صنعتی ، نظیر چرخ دهنده ها . خار پیستون ، محورهای انتقال و امثال اینها ، لازم است که سطح قطعه سخت بوده و در عین حال قسمت مرکزی آن ، چکش خواری خود را حفظ کرده و مقاومت به ضربه بالایی داشته باشد ، تا بتواند در مقابل نیروهای دینامیک مقاومت نماید . برای این منظور سطح قطعه را با کربن سمانته می کنند .

هدف از سمانتاسیون اشباع سطح قطعه فولادی از کربن می باشد .

برای سمانتاسیون می توان از سه نوع سمان استفاده کرد . به عبارت دیگر در سمان یا محیط کربن ده ، می توان قطعات را به سه روش مختلف مورد سمانتاسیون با کربن قرار داد :

1 ـ سمانتاسیون با عناصر جامد کربن ده .

2 ـ سمانتاسیون گازی ( یا کربن دهی گازی )

3 ـ سمانتاسیون مایع .

هدف از سمانتاسیون به دست آوردن یک سطح سخت و مقاومت در برابر فرسایش می باشد که با پر کردن سطح قطعه تا حدود 0.8 الی 1.1 درصد و سپس آب دادن آن حاصل می شود . این عمل نیز حد خستگی را بالا می برد .

سمانتاسیون ، عموماً بر روی فولادهای کم کربن ، یا فولادهایی با 18/0 ـ 1/0 درصد انجام می گیرد . برای قطعات بزرگ می توان فولادهایی با کربن کمی بیشتر
( 0.2 – 0.3 درصد ) به کار برد. فولادهایی که عمق نفوذ آب گیری در آنها کم است ، برای سمانتاسیون مناسب است . زیرا با سمانتاسیون این فولاد ها ، قشرهای مجاور زیر قشر سطحی و نیز قسمت مرکزی قطعه ، از کربن محیط سمانتاسیون اشباع نشده و چکش خواری خود را ، بعد از آب دادن سطح قطعه ، حفظ می کنند . در موارد متعددی لازم است که فقط قسمتهای معینی از یک قطعه سمانته شود. در این صورت بخشهایی را که نباید سمانته شوند را می توان از یک رسوب الکترولیتیک مسی ( به ضخامت 04/0 تا 03/0 ) و یا لفافهای مخصوص پوشانید .

این لفانها معمولاً از مخلوطی از تالک با رس سفید ( کائولن ) که کاملاً نرم شده و با شیشه محلول ( چسب شیشه یا سیلیکات سدیم ) خمیر گردیده است ، تشکیل شده اند . چون در هنگام سمانتاسیون این خمیرها به راحتی ترک برمی دارند ، لذا نمی توانند کاملاً در مقابل نفوذ کربن مؤثر باشند . روش مطمئن پوشش دادن با الکترولیت مس است .

عمق نفوذ کربن یا ضخامت قشر سمانته ، طبق تعریف ، فاصله از سطح سمانته تا صفحه‌ای است که سختی آن به 550 ویکرز برسد . ( استاندارد SIS 11700 8 ) .

غلظت کربن در قشر سطحی فولادهای کربنی باید به حدود 0.8 الی 1.1 درصد برسد .

اگر درصد کربن در قشر سطحی ، از مقدار فوق تجاوز نماید . سمانتیت آزاد و درشت در سطح تشکیل شده و کیفیت سطح فولاد را پایین می آورد .

در فولادهای کربنی عملاً تشکیل کربور، در فاز آستنیت در اثر دیفوزیون ، غیر ممکن است در حالی که در مورد فولادهای حاوی عناصر آلیاژی نظیر V,MO,Mn,CN .

بر عکس ، در موقع سمانتاسیون تشکیل قشر دو فازه آستنیت + کربور ، به وفور دیده می شود در این حالت ، کربورهای رسوب یافته عموماً یک شکل کروی دارند .

سمانتاسیون فولادهایکه کرم ، مولیبدن با منگنز در خود دارند ، می تواند غلظت کربن در سطح تا حدود 2 ـ 8/1 درصد برساند .

فولادهای زنگ نزن :

فولادهای زنگ نزن به دلیل کروم زیاد ، مقاومت به خوردگی بالایی دارند . برای تولید این نوع فولادهای بایست در حدود 12% کروم اضافه نمود . کروم سطح فلز را با تشکیل یک فیلم پسیواکسیدی مقاوم به خوردگی می نماید . برای تولید فیلم اکسیدی نیاز به محیط اکسیدی داریم .

اضافه کردن نیکل به فولاد زنگ نزن مقاومت به خوردگی را در محیط طبیعی یا اکسیدی ضعیب بهبود بخشیده و موجب افزایش قیمت آن می شود نیکل انعطاف پذیری و چکش خواری را نیز بهبود می بخشد و ساختار CC F آستنیت را در دمای محیط پایدار می کند .

مولیبدن ، هنگامی که به فولاد زنگ نزن اضافه می شود ، مقاومت به خوردگی را در حضور یونهای کلرید ، بهبودی بخشد ، در حالی که آلومینیم مقاومت را در دماهای بالا بهبود می دهد .

گروههای مهم فولاد زنگ نزن عبارتند از :

¨ آلیاژهای آهن کروم

¨ آلیاژهای نیکل ـ کروم ـ کربن

¨ آلیاژهای آهن کروم ـ کربن

محلول اچ فولادهای زنگ نزن که از روی کتاب :

An Introductiory to Metullurgical Labaratory techniques.

استخراج شده عبارتست از :

3 Parts Concentraded hydroclorich acid.
1 Parts Concentraded hy hydronitric acid.
6-8 Parts glycring .



شناسنامه قطعات



هر یک از قطعات خودرو دارای شناسنامه ای مجزا می باشند که این شناسنامه ها در شرکت بایگانی شده و به هنگام لزوم به آنها مراجعه می شود هر شناسنامه دارای دو جلد است .

مشخصات موجود در جلد شناسنامه به شرح زیر است :

نام قطعه به زبان فارسی و اصلی ، شماره فنی قطعه ، نام مجموعه اصلی به زبان فارسی و اصلی ، شماره فنی مجموعه اصلی ، نوع خودرو / مدل
فرم گردش کار در شرکت تامین کننده قطعه
نوع قطعه از لحاظ عملکرد ( مکانیکی ـ برقی ـ بدون عملکرد )
اطلاعات و مشخصات فنی قطعه شامل جنس ( ترکیب شیمیایی وخواص مکانیکی) ، پوشش ، شعاعهای خم نامعین ، شعاعهای برش نامعین وضعیت سطع و ….
شرح آزمایشات ابعادی و ظاهری : شامل روش آزمون استاندارد آزمون و ملاک پذیرش قطعه
نـوع آزمایشـات پلیمری : شامل روش آزمون استاندارد آزمون و ملاک پذیرش قطعه .
نوع آزمایشات متالوژیکی : شامل روش آزمون استاندارد آزمون و ملاک پذیرش قطعه
نوع آزمایشات عملکرد و دوام : شامل روش آزمون استاندارد آزمون و ملاک پذیرش قطعه
کنترل نمونه ( گزارش نتایج آزمایشها )
نقشه های ضمیمه شده

در جلد دوم شناسنامه متن تمام استاندارد های مربوط به قطعه گنجانده شده است .

سختی گرفتن از پیچها



تعدادی پیچ که برای بررسی به آزمایشگاه ارجاع داده شده بود ، پس از برش بوسیلة اره و سوهان زنی در سطح مقطع بریده شده ، بوسیله دستگاه مانت ، مانت گرفته شده و سپس با توجه به شمارة فنی هر پیچ ، مشخصات استاندارد هر پیچ شامل سختی سطح ، سختی مغز ، جنس و نوع پوشش استخراج شد . با توجه به اینکه می دانستیم که این پیچها سخت کاری سطحی شده است ، لذا برای اینکه بتوانیم سختی سطح و سختی مغز را با توجه به فاصله از سطح تعیین کنیم ، سختی آنها بوسیلة دستگاه میکرو سختی سنج اندازه گرفته شد .

دستگاه سختی سنج سختی را به ما بر حسب HV می دهد که با توجه به اعداد بدست آمده از روی قطر نقطه اثر و مراجعه به جدول ، معادل سختی بر حسب ویکرز بدست می آید .

همچنین دستگاه سختی سنج فاصله نقطه اثر که در آن نقطه سختی را می گیریم تا سطح قطعه بر حسب mm را مشخص می نماید .

چند نمونه از موارد بررسی شده :

نام قطعه بررسی شده : screw tapping

شماره فنی : k99865-C425B

درخواست کننده : سایپا کره

نام سازنده : کره

نوع پوشش : Black paint

جنس پیچ : size to szzc

سختی سطح در رنج قابل قبول : 450-750 HV

ضخامت قابل قبول : 0.1 – 0.23


اعتماد شما سرمایه ما