دسته بندی | ساخت و تولید |
فرمت فایل | doc |
حجم فایل | 60 کیلو بایت |
تعداد صفحات فایل | 84 |
تحقیق بررسی ریخته گری فولاد،ذوب فلزات در 84 صفحه ورد قابل ویرایش
فهرست مطالب
مقدمه ?
?-?- معرفی و به کار گیری سوپر آلیاژها ?
?-?- مروری کوتاه بر فلزات با استحکام در دمای بالا ??
?-?- اصول متالورژی سوپر آلیاژها ??
?-?- بعضی از ویژگیها و خواص سوپر آلیاژها ??
?-?- کاربردها ??
?-?- کلیات ??
?-?- شکل سوپر آلیاژها ??
?-?- دمای کاری سوپرآلیاژها ??
?-?- مقایسه سوپر آلیاژهای ریخته و کار شده ??
?-?-?- سوپر آلیاژهای کار شده ??
?-?-?- سوپر آلیاژهای ریخته ??
?-?- خواص سوپرآلیاژها ??
?-?-?- کلیات ??
?-?-?- سوپر آلیاژهای پیشرفته ??
?-?-?- خواص مکانیکی و کاربرد سوپرآلیاژها ??
?-?- انتخاب سوپرآلیاژها ??
?-?-?- کاربردهای آلیاژهای کار شده در دمای متوسط ??
?-?-?- کاربردهای آلیاژهای ریخته در دمای بالا ??
?-?- گروهها، ساختارهای بلوری و فازها ??
?-?-?- گروههای سوپرآلیاژها ??
?-?-?- ساختار بلوری ??
?-?-?- فاز در سوپرآلیاژها ??
?-?- مقدمهای بر گروههای آلیاژی ??
?-?-?- سوپر آلیاژهای پایه آهن- نیکل ??
?-?-?- سوپرآلیاژهای پایه نیکل ??
?-?-?- سوپرآلیاژهای پایه کبالت ??
?-?- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها ??
?-?-?- عناصر اصلی در سوپرآلیاژها ??
?-?-?- عناصر جزئی مفید در سوپرآلیاژها ??
?-?-?- عناصر تشکیل دهنده فازهای ترد ??
?-?-?- عناصر ناخواسته و مضر در سوپرآلیاژها ??
?-?-?- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون ??
?-?- استحکام دهی سوپرآلیاژها ??
?-?-?- رسوبها و استحکام ??
?-?-?- فاز ??
?-?-?- فاز ??
?-?-?- کاربیدها ??
?-?-?- کاربیدهای M7C3 44
3-4-6- بوریدها و عناصر جزئی مفید دیگر (به جز کربن) ??
?-?- تاثیر فرآیند بر بهبود ریز ساختار ??
ذوب و تبدیل ??
?-?- فرآیند EAF/AOD 47
4-1-1- تشریح فرآیند EAF/AOD 47
4-2- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD) 50
4-2-1- ترکیب شیمیایی آلیاژ و آماده کردن شارژ ??
?-?-?- بارگذاری EAF 52
4-2-3- کوره قوس الکتریک ??
?-?-?- تانک AOD 55
4-2-5- پاتیل ریختهگری ??
?-?- مروری بر ذوب القایی در خلاء (VIM) 58
4-3-2- تشریح فرآیند VIM 59
4-4- عملیات ذوب القایی در خلاء ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?-?- کوره القائی تحت خلاء ??
?-?-?- سیستمهای ریختهگری ??
?-?-?- عملیات ذوب القایی در خلاء ??
?-?- مروری بر ذوب مجدد ??
?-?-?- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR) 72
4-5-3- تشریح فرآیند مجدد با سرباره الکتریکی (ESR) 73
4-6- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کوره VAR 74
4-6-2- عملیات ذوب مجدد در خلاء با قوس الکتریکی ??
?-?-?- کنترل ذوب مجدد در خلاء با قوس الکتریکی ??
?-?- عملیات ذوب مجدد با سربار الکتریکی (ESR) 79
4-7-1- کوره ESR 79
4-7-2- عملیات کوره ذوب مجدد با سرباره الکتریکی ??
?-?-?- کنترل ذوب مجدد با سرباره الکتریکی ??
?- انتخاب سرباره ??
?-?- محصولات ذوب سه مرحلهای ??
?-?-?- فرآیند ذوب سه مرحلهای شمش ??
?-?- تبدیل شمش و محصولات نورد ??
?-?-?- همگنسازی توزیع عنصر محلول در شمشها ??
?-?-?- آهنگری محصول نیمه تمام ??
?-?-?- آهنگری محصول نیمه تمام آلیاژ IN-718 91
4-9-5- اکستروژن ??
?-?-?- نورد ??
?-?-?- دسترسی به محصولات نورد ??
مقدمه
طراحان نیاز فراوانی به مواد مستحکمتر و مقاومتر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهههای دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواستههای مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.
با شروع و ادامه جنگ جهانی دوم توربینهای گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قویتر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.
1-1- معرفی و به کار گیری سوپر آلیاژها
سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده میشوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فنآوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده میباشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی میتوانند به صورت ریخته یا کار شده باشند.
در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شدهاند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.
سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را میتوان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیبهای شیمیایی پر آلیاژتر معمولاً به صورت ریختهگری میباشند. ساختارهای سرهم بندی شده را میتوان با جوشکاری یا لحیمکاری بدست آورد، اما ترکیبهای شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری میشوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) میتوان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.
1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا
استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازهگیری و گزارش میشود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازهگیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظهای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا میکند. این ازدیاد طول وابسته به زمان خزش نامیده میشود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده میشود) همانند استحکامهای تسلیم و نهایی در دمای اتاق یکی از مولفههای مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا میکند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکامهای تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل میکنند.
1-3- اصول متالورژی سوپر آلیاژها
سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل میشود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمیشود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین میگردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب میشود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژهای صورت نمیگیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژهای مانند رسوبها افزایش مییابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش میدهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف میشود.
تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق میافتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطافپذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 9/8 میباشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.
چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش میدهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.
دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتیگراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.
4-2-3- کوره قوس الکتریک
یک طرح عمومی از کوره EAF در شکل 4-1 نشان داده شده است. ظرفیت کوره EAF باید با ظرفیت تانک AOD یکسان باشد. عملیات EAF/AOD سوپرآلیاژها با ظرفیت Kg 9000 میتواند انجام گیرد، اما اکثراً ظرفیت تولید این روش در حدود kg36000 انتخاب میشود.
دیواره کوره فولادی مدور با سیستم آبگرد و لایه نسوز آجری است. انتخاب آجرهای نسوز به نوع آلیاژ و طراحی کوره بستگی دارد. هزینه نسوز کاری یک کوره متوسط 18 تنی تقریباً 18 هزار دلار است. قسمت پایین کوره ثابت و سقف آن متحرک است. سقف کوره میتواند در یک صفحه افقی حرکت کرده و کاملاً از کوره دور شود تا بار به درون آن ریخته شود. سقف کوره دارای سه الکترود گرافیتی است، که در داخل کوره قرار میگیرند. در قسمت جلو دیواره کوره مجرای خروج مذاب و در قسمت عقب آن دریچه سربارهگیری قرار دارد. کوره قوس تقریباً در داخل یک چاله قرار دارد، به نحوی که مجرای خروج مذاب و دریچه سربارهگیری تقریباً در کف کارگاه قرار میگیرند. وجود چاله اجازه میدهد، که پاتیل حمل مذاب و پاتیل سرباره میتوانند تا نزدیکی کوره آورده شوند. سطح این پاتیلها پایینتر از سطح مجراها قرار میگیرند. کوره قابلیت چرخش تا 90 درجه به طرف جلو را دارد، تا فلز مذاب کاملاً به درون پاتیل ریخته شود. زاویه چرخش کوره به طرف عقب به منظور سربارهگیری حداکثر 20 درجه است.
به دلیل پایین بودن چگالی مواد اولیه نمیتوان همه آن را یکباره به کوره بار کرد. ابتدا بخشی از بار به کوره اضافه میشود و سقف کوره مجدداً در جای خود قرار میگیرد. الکترودها به طرف شارژ حرکت میکنند و قوس الکتریکی بین بار و الکترود ایجاد میشود. ابتدا قوس کم ولتاژ ایجاد میشود. با شروع به ذوب شدن بار الکترودها پایینتر میروند و ولتاژ جریان افزایش مییابد. تا قوسی با طول بیشتر ایجاد گردد و در نتیجه بازدهی ذوب افزایش یابد. عملیات مزبور تا ذوب شدن همه بار ادامه پیدا میکند. سقف کوره کنار میرود و باقی مانده بار به کوره ریخته میشود (بارگذاری مجدد)، پس از بارگذاری مجدد، سقف کوره به محل قبلی خود برگشته و تا زمانی که کل بار ذوب شود، قوس بر قرار میشود. پس از آن گرم کردن ذوب با دمش اکسیژن و آرگن میتواند انجام شود.
اکسیدهایی که در این مرحله به وجود میآیند، ممکن است بسیار خورنده باشند و به لایه نسوز کوره آسیب وارد کنند. ساییدگی نسوزها در همه ذوبها اتفاق میافتد، ولی برای جلوگیری از آسیبهای موضعی شدید نسوز دیواره، معمولاً آهک به بار کوره اضافه میکنند. آهک نقش سرباره ساز دارد و سرباره ایجاد شده در کوره به صورت دستی از آن گرفته میشود. برای سربارهگیری کوره به سمت عقب چرخیده و سرباره جمعآوری شده، از دریچه سربارهگیری خارج میشود. این عمل در صورت نیاز و بسته به نوع بار قابل تکرار است.
پس از آنکه بخش عمدهای از سرباره تشکیل شده تخلیه گردید، یک نمونه آنالیز شیمیایی از ذوب تهیه میشود. بر مبنای ترکیب شیمیایی بدست آمده از این نمونه ممکن است دمش گاز ادامه یابد یا تعدادی از عناصر آلیاژی برای تنظیم ترکیب شیمیایی قبل از انتقال به واحد AOD به آن افزوده شود. زمان تقریبی مرحله EAF فرآیند EAF/AOD تقریباً 1 تا 3 ساعت است. پس از آماده شدن ذوب آن را به درون پاتیل انتقال مذاب میریزند. پاتیل انتقال (یک ظرف نسوز کاری شده با مجرای خروج مذاب) در مقابل کوره قوس قرار داده میشود. کوره میچرخد و محتویات خود را به درون پاتیل میریزد. ممکن است پاتیل با MgO نسوزکای شده باشد، تا با سرباره آهک مطابقت داشته باشد. امکان دارد موقع سربارهگیری ذرات سرباره بر روی مذاب شناور باقی به ماند. قبل از ریختن مذاب برای جلوگیری از افت دمای مذاب در پاتیل، آن را پیش گرم میکنند. پاتیل انتقال مذاب به تانک AOD برده میشود و مذاب به درون تانک ریخته میشود.
4-2-4- تانک AOD
در شکل 4-6 تانک AOD نشان داده شده است. دیواره تانک فولادی و نسوز کاری شده است. نمای بیرونی تانک شبیه به مخلوط کنهای بتن با تنه مدور و سر مخروطی است که در محل قرارگیری خود میتواند بر روی یک صفحه عمودی چرخش نماید. ظرفیت تانک متناسب با ظرفیت کوره EAF و معمولاً کمتر از 36 تن است. یکی از مشخصات ویژه تانک AOD این است که در کف آن تعدادی لوله برای دمش مخلوط اکسیژن و آرگن وجود دارد. این لوله تعدادی لوله هم مرکز هستند که از لوله مرکزی مخلوط آرگن و اکسیژن و از لوله بیرونی فقط گاز خنثی (معمولاً آرگن) برای خنک کردن انتهای لوله مرکزی دمیده میشود.
لایه نسوز تانک AOD شبیه نسوز کوره EAF است و در طی فرایند فرسوده میشود. کنترل درجه قلیایی سرباره یک عامل کلیدی برای اطمینان از آسیب ندیدن لایه نسوز از طرف سرباره میباشد. اولین مرحله در تانک AOD کربن زدایی مذاب است. اگر درون مذاب اکسیژن خالصی دمیده شود، نتیجه کار نه تنها کربن زدایی مذاب نخواهد شد بلکه کروم بیشتری به اکسید کروم تبدیل خواهد شد. برای اقتصادی کردن واکنش کربنزدایی، فشار جزئی اکسیژن دمیده شده به مذاب با اضافه کردن آرگن به آن کاهش داده میشود تا از مقدار کرومی که به اکسید کروم تبدیل میشود، کاسته شود. وقتی که مقدار کربن مذاب بالا باشد، نسبت آرگن به اکسیژن در مخلوط گازی 3 به 1 در نظر گرفته میشود. با کاهش مقدار کربن مقدار آرگن باید افزایش یابد. با نزدیک شدن به مرحله کربن زدایی کامل نسبت آرگن به اکسیژن تقریباً 6 به 1 در نظر گرفته میشود.
حرارتی که در اثر واکنش کربن زدایی به وجود میآید، مقداری از کروم را اکسید میکند. در اثر دمش گاز، سیلسیم نیز اکسید میشود ولی حرارت ناشی از اکسیداسیون آن ناچیز است و اثر کمی در گرم کردن مذاب دارد. یادآوری این موضوع اهمیت دارد که تانک AOD فاقد منبع انرژی حرارتی خارجی سات و دمای آن در اثر واکنشهای گرمازا افزایش پیدا میکند. چنانچه لازم باشد دمای مذاب پایین آورده شود، از قراضه جامد استفاده میشود. یکنواخت نگه داشتن دمای مذاب از لحاظ اقتصادی اهمیت دارد، زیار تبدیل عناصر آلیاژی با ارزش (به ویژه کروم و نیوبیوم) به سرباره تحت تاثیر دما انجام میگیرد. از فوق گداز شدن مذاب باید جلوگیری کرد، زیرا خنک کردن و گرم کردن مجدد آن زمان بر بوده و بازیابی کامل عناصر آلیاژی موجود در سرباره را دشوار میسازد.
در طی فرآیند کربنزدایی به مذاب آهک اضافه میشود. آهک اضافه شده در مرحله دمش گاز کاملاً با مذاب مخلوط شده و درجه بالایی از گوگرد زدایی مذاب به دست میآید. CaS حاصل از گوگردزدائی به صورت سرباره در میآید. چنانچه پس از نمونهگیری از ترکیب شیمیایی، کربنزدایی تا سطح مورد نظر انجام شده باشد، مرحله بازیابی عملیات AOD شروع میشود.
دسته بندی | گزارش کارآموزی و کارورزی |
فرمت فایل | doc |
حجم فایل | 32 کیلو بایت |
تعداد صفحات فایل | 46 |
گزارش کارآموزی شرکت ذوب فلزات زندیه(ریخته گری) در 46 صفحه ورد قابل ویرایش
فهرست مطالب
عنوان صفحه
تاریخچه 1
ماسه قالبگیری 3
منشاء پیدایش ماسه در طبیعت 5
هوازدگی 7
عوامل موثر در هوازدگی 11
انواع ماسه های طبیعی 13
آماده سازی ماسه 14
خواص فیزیکی ماسه قالبگیری 17
قالبگیری قطعات آلومینیومی (دو درجه ای) 27
ذوب ریزی 31
انواع بوته 32
مذاب مصرفی 36
قسمتهای مختلف کوره زمینی 36
انواع مدل 37
چدن ریزی 38
افزودن منیزیم به مذاب 40
قالبگیری قطعات سنگین 44
قالبگیری قطعات سبک 45
ذوب 47
انواع سلاکس 47
مخلوط کن ماسه CO2 48
تاثیر سرعت سرد کردن بر روی اعوجاج 54
نتایج 50
اهمیت سرعت های سرد کردن بر چقرمگی فولادهای کار گرم 54
تاثیر سرعت سرد کردن به چفرمگی قالب 55
بهداشت و ایمنی در واحدهای ریخته گری 57
کلیاتی راجع به مواد منتشره 57
نوع سوخت مورد استفاده 59
تنظیم مشعل 59
روشهای تهویه برای کوره های شعله ای 60
مواد منتشره از کوره های ذوب در فرایند تولید فلزات غیر آهنی 61
برنج ، برنز و سایر آلیاژهای مس 61
آلیاژ آلومینیوم و منیزیم 64
تاریخچه :
این شرکت ریخته گری در سال 1368 آغاز به کار کرده است . از همان ابتدا کار خود را با ذوب آلومینیوم توسط یک کوره زمینی شروع کرده و درصدد بود تا بتواند محصولات تولیدی خود را هر چه بیشتر توسعه داده و در زمره شرکت های ریخته گری مطرح ایران قرار دهد این شرکت با تولید قطعات ریختگری سبک وزن آلومینیومی کار صنعتی خود را شروع کرد و هم اکنون علاوه بر ذوب آلومینیوم ،چدن داکتیل یا SG نیز توسط کوره های دوار ذوب کرده و قطعات مختلف صنعتی را تولید و به بازار عرضه می کند. امروزه ذوب چدن بسیار زیاد در صنعت مطرح است و روز به روز قطعات مختلف را با آلیاژهای متفاوت چدن ریخته گری شده و عرضه می شوند.
1- اره چدنی – لوله های چدنی (در سایزهای مختلف )– دریچه فاضلاب(در سایزهای مختلف) – پمپ – واترپمپ – رنده – منی فولد – اگزوز – سر سیلندر- قطعات سایپا دیزل-
تجهیزات شرکت :
1- 2 عدد کوره زمینی
2- تعداد 7 عدد کوره دوار
3- جرثقیل ذوب ریزی
4- بوته های مختلف با ظرفیت ههای متفاوت
5- دستگاه مخلوط کن ماسه Co 2
6- دستگاه آلات تراشکاری
7- ریل مخصوص بوته
8- دستگاه شات بلاست
محصولات شرکت
1- لوله های چدنی شامل زانویی –سه راهی و ….
2- اره های چدنی
3- دریچه های فاضلاب
4- پمپ
5- واتر پمپ
6- رنده
7- منی فولد
8- اگزوز
9- سر سیلند
10- قطعات مختلف سایپا دیزل
11- کلاهک چراغ
12- پایه صندلی
13- پوسته گیربکس شیرهای گاز با اینچ بالا
این کارخانه دارای قسمتهای زیر می باشد :
1- محل تولید قطعات ،آلومینیومی
2- گود ماسه دان جهت قالبگیری قطعات آلومینیومی
3- محل تولید قطعات چدنی کوچک
4- محلی برای قرارگیری کوره های دوار
5- انبار مخصوص مواد اولیه ریخته گری
6- گود ماسه دان بزرگ برای قالبگیری قطعات چدنی سبک
7- قسمت تولید قطعات چدنی سنگین وزن
8- قسمت تراشکاری
ماسه قابگیری
بخش عمده تولید قطعات ریختگری در قالب های ماسه ای انجام می شود برای تولید یک تن قطعه ریختگی ممکن است به 4 تا 5 تن ماسه قالبگیری نیاز باشد.نسبت ما بین مقدار ماسه – فلز می تواند از 10 به 1 تا 1 به 25/0 متفاوت باشد که این نسبت به اندازهقطعات ریختگی و روشن قالبگیری مورد استفاده ،بستگی دارد . در هر حال مقدار ماسه ای که باید دریک کارگاه ریخته گریبا ماسه نگهداری شود زیاد است و کیفیت آن نیز باید کنترل شود تا قطعات ریختگی سالم تولید شود.
انواع مختلفی از ماسه برای قالبگیری به کار می رود فرآیند های ریخته گری در ماسه (Sand – Casting Processes) متنوع هستند و هر یک بااستفاده از قالب های تهیه شده از ماسه تر (green sand) ماسه خشک (dry sand) ،ماسه ماهیچه (core sand) ، ماسه با چسب سیمان .
(Cement - bonded sand) ،ماسه قالبگیری پوسته ای (shell – molding sand) و قالبگیری بدون درجه (Flaskless molding) و نظایر آنها ،انجام می شود . شکل (1)مقابل قالب هایی را که برای ریخته گری قطعات فولادی تهیه شده است نشان می دهد. در تصویر (2) دیگر قالبگیری در گودال که از طریق مونتاژ ماهیچه های ماسه ای بزرگ آماده شده است ملاحظه می شود.
منشأ پیدایش ماسه در طبیعت
در بسیاری ا زنقاط پوسته جامد کره زمین محل هایی را می توان یافت که در آنها تجمعی از ماسه وجود دارد . اینگونه محل ها که به معدن طبیعی ماسه موسوم هستندبواسطه عوامل مختلفی بوجود آمده اند . در معادن مختلف طبیعی می توان ماسه هایی با شکل و اندازه و جنس متفاوت یافت . ماسه در زمره سنگهای رسوبی است که طی فرآیندهای بیرونی تغییر دهنده زمین وبر اثر یک سلسه . تحولات بواسطه خرد شدن و تجزیه سنگ ها و سپس انتقال و رسوب گذاری پدید آمده است . فرآیندهای بیرونی تغییر دهنده زمین شامل فرآیند های تخریبی و فرسایشی (erosion) مختلفی است که طی آنها خرد شدن و تجزیه و تفکیک شدن و سپس حمل (transpor tation) مواد به نقاط دیگر انجام می شود. بنابراین در ابتدا تحولات تخریبی – فرسایشی باعث خود و ریز شدن ،تجزیه و تفکیک شدن سنگ ها می شود و سپس عوامل دیگر ذرات را به مناطق دیگر جابجا می کنند و بر اثر رسوب گذاری (depostion) تجمعی از شن ، ماسه ، خاک رس و امثال آنها پدید می آید .
شکل(3) مقابل نموداری از تحولات و فرآیندهای بیرونی زمین را نمایش می دهد.
فرآیندهای بیرونی تغییر دهنده زمین که منجربه پیدایش تجمعی از ماسه و امثال آن در نقاط مختلف می شود را می توان با توجه به تحولات و عوامل زیر مورد بررسی قرار داد.
هوازدگی
(Weathering) فرآیندی است که مورد متراکم و پیوسته سطح زمین را به موادی نرم و ناپیوسته تبدیل می کند این فرآیند اثر عوامل فرسایش دیگررا در جابجا کردن مواد آسانتر می کند . به طور کلی «هوازدگی » عبارت است از «خرد شدن » و تجزیه شیمیایی سنگ ها در محل خود به علت تأثیرات آب ،هوا و موجودات زنده .
فرآیند هوازدگی به سه گروه ،هوازدگی فیزیکی،هوازدگی شیمیایی و هوازدگی زیستی تقسیم بندی می شود.
1- هوازدگی فیزیکی
در این نوع فرآیند هوازدگی ،عوامل فیزیکی باعث خردشدن و متلاشی شدن سنگ ها می شوند .
الف – انجماد آب در شکاف سنگ ها
در اثر یخ بستن آب تقریباً 9 درصد به حجم آن افزوده می شود و در محیط بسته فشاری معادل 140 کیلو گرم بر سانتی متر مربع اعمال می نماید. اگر آب در شکاف سنگ منجمد شود و این عمل به طور مکدر انجام می شود . فشارهای ایجاد شده بیش از مقاومت سنگ است و می تواند سخت ترین و مقاوم ترین سنگ ها را نیز درهم بشکند . شاید مهمترین عامل خرد شدن سنگ ها ، یخ بستن آب در داخل حفره ها و شکاف های آنها باشد.
ب- تغییرات درجه حرارت
اغلب اجسام بواسطه بالا رفتن دما انبساط (expension) و بواسطه کاهش دما انقباض (contraetion) حاصل می کنند. سنگ ها نیز بواسطه تغییرات شبانه روزی یا سالیانه درجه حرارت چنین واکنشی نشان می دهند. انبساط و انقباض مکدر سنگ ها سرانجام به خرد شدن سطحی آنها منجر می شود. زیرا اولاً قابلیت هدایت حرارتی سنگ ها کم است و باز شدن درجه حرارت ،سطح یک سنگ بیش از قسمتهای داخلی آن منبسط می شود و ثانیاً کانیهای گوناگون تشکیل دهنده یک سنگ ،دارای ضریب انبساط حرارتی یکسان نیستند و در نتیجه ، تغییر درجه حرارت موجب می شود که کانیهای مختلف به مقدار متفاوتی تغییر حجم دهند.
تغییرات درجه حرارت به تنهایی عامل مهم هوازدگی نیست بلکه این عامل به همراه آب نقش مهمی را ایفا می کند.
ج – رشد بلورها
اگر محلول نمک ها به هر علتی به داخل شکاف یا منفذ سنگ ها راه یابد و در آنجا متبلور شود . احتمال دارد باعث خرد شدن سنگ شود . اگر چه تبلور یک محلول با انجماد ساده یک مایع کاملاً متفاوت است ولی رشد بلورها در شکاف سنگ ها می تواند اثری شبیه به یخ بستن آب ولی ضعیف تر به جا بگذارد.
د - تشکیل کانیهای جدید
اگر کانیهای یک سنگ به کانیهای جدیدی تبدیل شود و حجم کانیهای جدید پیش از کانیهای اولیه باشد ،این ازدیاد حجم می تواند سبب فشرده شدن ذرات کانیها به یکدیگر و خرد شدن سنگ شود.
ه – فرسایش بخش سطحی توده سنگ ها
در پاره ای از سنگها یک سری درز به موازات سطح خارجی دیده می شود . احتمالاً علت تشکیل این گونه درزها آن است که تا وقتی که سنگ ها (مثلاً توده ای آذرین ) در زیر زمین قرار دارند تحت فشار سنگ های بالایی هستند ولی اگر فرسایش سنگ های فوقانی باعث ظاهر شدن سنگ های زیرین در سطح زمین شود . آنجایی که این سنگ ها فشار طبقات فوقانی آزاد می گردند ، قسمتهای سطحی آنها انبساط پیدا می کند .در نتیجه این انبساط،یک سری درز به موازات سطح خارجی آنها به وجود می آید. این نوع هوازدگی موجب ورقه شدن (exfolition) قسمت های سطحی توده می شود . در شکل 4 چگونگی این پدیده نشان داده شده است .
نتایج
با کوئنچ مستقیم ماده درC31 در هر دقیقه J19 حاصل شد و طبق استاندارد DC 9999-1 ،80% حد نهایی ،یعنی J22 ،است .
روش کوئنچ منقطع در مقایسه با کوئنچ مستقیم کاهش اندکی را نشان داد ،ولی کماکان بالای 80% حد نهایی می باشد و یک تأثیر به سزایی را براعوجاج داشته است .
جهت کنترل دقیق سیکل عملیات حرارتی ،یعنی درجه حرارت سختی ،زمان ماندن در دمای داخل قالب کار گذاشته شوند. مورد نظر و سرعت سرد کردن ،سوراخ های ترموکوپل باید به
بسیا رمهم است که مغزه ترموکوپل در مرکز مقطع حاکم قالب قرار داده شود؛بخصوص اگرکوئنچ منقطع انجام شود که باید در قسمت های قطور قرار داشته باشد. استفاده از کانالهای آب برای ترموکوپل به علت دقت لازمه در خواندن درجه حرارت مغزه توصیه نمی شود.
سرعت سرد کردن C 28 در هر مینیمم دقیقه جهت بهبود ،چقرمگی ماده ضروری می باشد اعوجاج حاصله طی سریع سرد کردن می تواند با مرحله کردن کوئنچ کاهش یابد که خود این عمل یکسان سازی درجه حرارت های سطح و مغزه ،قبل از کوئنچ با تشکیل منطقه مارتنزیتی و بدون کاهش چقرمگی را موجب می گردد . این مسئله لازم است در قسمت های قطور انجام شود.
مسلماً استفاده از سوراخ های ترموکوپل و به این ترتیب ،کنترل صحیح و دقیق درجه حرارت های سطح و مغزه با عملیات های حمام نمک یا بستر سیال ممکن نمی باشد به این دلیل است که عملیات کوئنچ در خلأ با فشار گاز در نظر گرفته می شود.
علاوه بر این ،امکان تعیین حد نهایی چقرمگی ماده وجود دارد. همچنین سیکل عملیات حرارت کنترل می شود که 80% از حد چقرمگی ایجاد شده و به این ترتیب عمر قالب بهببود می یابد.
نتیجه سختی 46 تا 47 راکول است . چهار آزمایش با استفاده از سرعت های مختلف سرد کردن در یک کوره خلأ انجام شد که شکل 2 یک نمونه سیکل عملیات حرارتی را نشان می دهد.
آنچه که درپایان عملیات و درنتایج حاصله مشهود بود (شکل 3 را ببینید) این است که افزایش سرعت سرد کردن سطحی ،چقرمگی ماده را بهبود می بخشد . مشخص است که میزان سرد شدن سطحی C 8/28 به ازاء هر دقیقه میزان چقرمگی را حدود 80% حد نهایی چقرمگی موجب می گردد.
سریع سرد کردن از تشکیل کاربیدهای مرزدانه ای جلوگیری کرده و امکان ایجاد فاز بینهایت را کاهش داده یا از تولید آن ممانعت می کند .رسوب مرزدانه ای و تشکیل بینایت به عنوان دو عامل کاهش دهنده چقرمگی سطح قالب شناخته شده اند.
مقایسه ریز ساختارها نسبت به سرعت سرد کردن رد شکل 4 نشان داده شده اند. ریزساختار نمونه آزمایشی که در C16 به ازاء هر دقیقه سرد شده است ،وجود کاربید مرزدانه ای را نشان می دهد که این امر خود کمابیش بر کاهش چقرمگی تأثیر می گذارد . دیاگرام CCT برای مواد نمونه آزمایشی در شکل Δ نشان داده شده است .
قابل توجه است که درانجماد C40 به ازاءهر دقیقه ،افزایش مقاومت به ضربه را موجب نمی گردد. سرعت سرد کردن روغنی در مقایسه باکوئنچ 5bar در نیتروژن می تواند 10 بار سریع تر صورت گیرد . بنابراین ،افزایش جزیی در چقرمگی ممکن است تنها با افزایش قابل توجهی در سرعت سرد کردن حاصل گردد.
با انجام آزمایشی بر روی نمونه های مختلف همراه با عملیات حرارتی قالب ها ،مقاومت به ضربه بالایی با سرعت انجماد سطحی به میزان C28 به ازاء هر دقیقه به دست آمده است.
عدم موفقیت در ایجاد مقاومت به ضربه بالا که مدنظر می باشد تنها یک بار اتفاق افتاد وبا انجام تحقیق و بررسی ،کاربیدهای اولیه در ماده دلیلی بوده است بر پایین بودن سطح چقرمگی که درشکل 6 این امر مشهود است .این کاربیدهای اولیه در ماده آنیل شده یافته شده اند.
اهمیت سرعت های سرد کردن بر چقرمگی فولادهای کار گرم
مقدمه
دستیابی به بهترین خواص گرم موجود در فولادهای کارگرم مصرفی برای قالبهای ریخته گری فشاری ،به کنترل دقیق و جدی فرآیند عملیات حرارتی نیازمند می باشد.
جهت بهبود عملکرد قالب ؛درجه حرارت ،زمان نگهداری و سریع سرد کردن باید طی فرآیند سختی به دقت عمل شده و کنترل گردند. با کنترل این پارامترها ؛چقرمگی قالب می تواند با کاهش اثرات اندازه دانه درشت ،کاربیدهای مرزدانه ای و تشکیل فازهای پرلیت و یا بینیت و در آخر ،بهبود عملکرد قالب به بیشترین حد برسد. تأثیر متقابل این پارامترها بر یکدیگر و عواملی که موجب ایجاد بهترین روند کاری می گردند مورد بررسی قرار گرفته است.انتخاب و کنترل درجه حرارت های سختی و زمان های نگهداری به آسانی با کوره های پیشرفته خلأ هماهنگ می شوند. با توجه به این مسئله ،در این مقاله عمدتاً سریع سرد کردن و اثر آن بر روی ریزساختار و چقرمگی مورد بررسی قرار می گیرند.
تأثیر سرعت سرد کردن به چقرمگی قالب
برای انجام آزمایشات قالبی با ابعاد 16×62×87 میلی متر مورد استفاده قرار می گرفت . برای تحلیل مشخصات عملیات حرارتی 4 قالب دارای سوراخ های سطحی ترموکوپل به عمق 16 میلی متر و قطر 3 میلی متر و سوراخ های ماهیچه های دوقلو که درمرکز قطورترین قسمت کار گذاشته شده اند ،به کار رفت . دو نمونه آزمایشی در نزدیکی سوراخ سطحی ترموکوپل به آنها جوش داده شد. (شکل 1 ) .
دسته بندی | گزارش کارآموزی و کارورزی |
فرمت فایل | doc |
حجم فایل | 28 کیلو بایت |
تعداد صفحات فایل | 31 |
گزارش کارآموزی قالبسازی در کارگاه ذوب فلزات مدرن در 31 صفحه ورد قابل ویرایش
فهرست مطالب
عنوان صفحه
مقدمه 1
انواع روشهای قالبگیری در کارگاه 2
مدل سازی 5
انواع و اقسام غلتکها و رینگها 8
کارگاههای خاص 10
تجهیزات کارگاه ریخته گری 12
مجتمع آزمایشگاهی و آزمایشگاههای مواد 18
قالبگیری زمینی 24
قالبگیری CO2 26
ماهیچه سازی 27
برخی از مشخصه های سنماتیت 33
عوامل موثر در انتخاب کوره 35
آزمایشهای آزمایشگاهی چدن 36
تئوری ریخته گری فولادها 42
فولادهای کم کربن 44
مقدمه
شرکت قالب سازی فیکس در سال 1375 تاسیس گردیده و این شرکت در جاده قدیم کرج بلوار فتح - جوشن 3 کوچه چهار شرقی قرار دارد .
کارگاه 3500 متر می باشد که شامل یک سوله بزرگ و در کنار آن یک ساختمان دو طبقه که شامل دفتر کارگاه محل قرار گرفتن دستگاهها می باشد . در پشت سوله یک محوطه می باشد که در آن انواع کوره ها از جمله کوره زمینی - دوار - کوپل قرار دارد . بیشتر تولیدات این کارگاه شامل سفارشات چدن - چدن نشکن و آلومینیوم می باشد . البته مس ،روی و برنج و برنز و غیره نیز هست ولی کمتر از این سفارشات را دارند . عمده سفارشات تولیدات این کارگاه شامل کارتر روغن کمپرسورهای 250 لیتری ، لوازم دستگاه آپارت گیری و پنچر گیری و سیلندر ماشین های سنگین و غیره که اینها برای ریخته گری آلومینیوم و همچنین چدن ریزی برای انواع و اقسام قطعات ماشین آلات سنگین می باشند .
روش کار دراین کارگاه به صورت قالبگیری سنتی می باشد و لوازمی که برای قالبگیری سنتی استفاده می شوند شامل :
1- جعبه ماهیچه
2- درجه و زیر درجه
3- قاشک
4- سیخ هوا
5- کوبه
6- خط کش فلزی یا کاردک
7- الک
8- پودر تالک
9- ماسه سیلیسی و غیره
انواع روشهای قالبگیری در کارگاه :
1- روش CO2 برای ماهیچه سازی : 1- چسب سیلیکات سدیم 2- گاز CO2 و غیره
2- روش قالبگیری گچی (دوغابی ) : بعد از ریخته گری قطعات آنها را با ساتفاده از عملیات داخل کارگاه آماده فروش می رسانند .(1- کندن راهگاه و سیخ هوا 2- سوراخ کردن محل هایی که باید سوراخ شوند 3- پرداخت کاری بر روی قطع 4- رنگ کردن بعضی از قطعات (مخصوصاً قطعات آپارات ) 5- بسته بندی کردن و غیره )
لوازم و وسایل برقی که در کارگاه موجود می باشد :
1- مخلوط کن که برای مخلوطکردن ماسه و چسب و آب و غیره انجام می گیرد .
2- دستگاه آسیاب که برای جدا سازی ناخالصی ها از ماسه انجام می گیرد .
3- دستگاه برش 4- کمپرسور هوا 5- دستگاه تراش کاری 6- دریل 7- دستگاه جوشکاری (ترانسفورماتور )
مطالبی در مورد مذاب آلومنیوم و مذاب چدن قبل از ریختن درون قالب :
مذاب آلومنیوم : برروی این مذاب بعد از خارج کردن از بوته از پودر کاورال (که قرمز رنگ می باشد ) استفاده می شود که باعث چسبندگی مذاب و گرفته شدن تفاله و سیالیت بیشتر در مذاب می گردد .
مذاب چدن : بر روی این مذاب بعد از خارج کردن از بوته پودر سیلاکس که قرمز رنگ و دانه درشت تر از کاوارل می باشد می ریزند تا شیره و تفاله و سرباره را جذوب خود بکند و باعث می شوند که این مواد غیره ضروری بر روی مذاب جمع شده و به راحتی جمع آوری شوند در ضمن پودر بوراکس که سفید رنگ و نرم می باشد و همچنین حالت دانه ریزتری دارد برای مذاب آلیاژهای مس ، برنج ، برنز و غیره استفاده می شود .
مدل سازی
نقشه های آماده برای مدلسازی :
مدل سازی با فوم یا یونیلیت : فوم یک مدل مصرفی است از مدل در قالب می سازند و مدل ذوب شونده است که گاز زیادی تولید می کند .
اکثر کارها چوبی هستند ، اگر تعداد کم باشد از چوب در صورت زیاد بودن قطعه ها و دقت ابعادی بالا قطعه دار AL می کنند و بعد وارد خط تولید می شود .
برای قطعاتی که اضافه تراش و دقت ابعادی بالا دارند وقتی AL می شود و بر می گردد که AL 1 در صد انقباض چدن 2 در صد در کل 3 در صد می شود که بعد از آن برای ریخته گری انقباض 2 در صد باید لحاظ شود .
در صد اضافی برای ابعاد 100 و قطعه ریختگی AL است که این قطعه اول AL می شود و بعد فولاد می شود . که 3 در صد انقباض دارند که بعد از AL شدن 2 در صد انقباض نهایی است .
پوشش مدل چوبی بستگی به جدول استاندارد دارد .
در روشهایی که تعداد زیادی قطعه نیاز باشد در مدلسازی از فوم استفاد می شود که فوم نیاز به خارج کردن ندارد ومی سوزد و گاز زیادی تولید می کند و فقط مشکل ما این است که گاز زیادی که تولید می شود را از قالب خارج کنیم در غیر این صورت قطعه معیوب می شود .
در فوم کاری برای قطعات زیاد می شود که فقط لوله راهگاه را خارج می کنند و بقیه یعنی مدل از جنس فوم است .از قالب خارج نمی شود و قبل از ریختن مذاب با حرارت فوم را می سوزانند و بعد از مذاب را می ریزند .
روش گریز از مرکز - سانتیریفوژ
ریخته گری گریز از مرکز افقی با قطعه داخلی :
قالب با دور مشخص می چرخد دور دستگاه - بار ریزی - درجه حرارت - مهم است جنس فلزی فولاد - فولاد ساده جنس ریخته گری شده است وقتی داخل قالب ریخته می شود باید از منجمد شدن سریع باید توسط آب خنک شود . چون ذوب سریع وارد می شود یا انبساط ناگهانی روبرو نشود .
سرعت بار ریزی توسط دستگاهی مشخص می شود
اگر ذوب مدت زمانی طول بکشد تا برسد آخر باید سپس اول سریع ریخته شود .
زمان بار ریزی مهم است که دوش آب روی پاشیده می شود .
سفارش مشتری :
دارای کیفیت بالا . قطعه دارای ترک است که در قالب گر کرده و در اثر انقباض ترک خورده .
انواع فولاد ها با روش سانتیریفیوژ
دمای ریخته گری در این روش باید نسبتاً بالا باشد c 1590
در این واحد کارگاهی 4 کوره القایی که یکی با 2 تن ظرفیت بزرگترین کوره می باشد .
کوره القایی با فرکانس بالا ، متوسط ، پائین
در فرکانس بالا تلاطم کم می باشد .
در فرکانس پائین سطح مذاب
در فرکانس بالا سرعت ذوب دهی و خوردگی جداره کوره کمتر لوله های فولادی توسط نورد تولید می شود لوله های گاز به این روش ریخته گری می شود .
انجماد بصورت ناهمگن و وسط بصورت همگن است . در گریزاز مرکز عمودی
انواع و اقسام غلتکها و رینگها :
دور دستگاه با چیفکتور مشخص می شود . وقتی می گوئیم با 60 g = یک ذره برابر 60 برابر نیرو وارد می شود به بدنه گریز از مرکز دارای انبساط طولی و عرضی می باشد .
گریز از مرکز عمودی وقتی طول به قطر زیاد باشد افقی ریخته گری می کند .نسبت قطر به طول بیشتر باشد ، غلطکهای نورد ذوب آهن آلیاژ STEEL Base % 7 G و مقداری ni-cr که سختی لازم را بدهد .
سانتریفوژ عمودی :
تیرآهن به این روش ریخته گری می شود .
آلیاژ از خود کارخانه گرفته می شود و بیشتر آلیاژ را از روی ساختاری متالوگرافی آلیاژ را دست کاری می کنند .
توزیع کاربید در شبکه برای ریخته گری غلتکها مهم است که نسبت به غلطکها و ساختار غلتکهای تعیین می شود .
قالب را توسط مکپ می بندند :
در ریخته گری به روش گریز از مرکز افقی پوشش زیر کن می دهند . لوله ها با سانتریفوژ افقی ریخته گری می شوند .
فورم گیری دستی به علت تنوع کاری در روز 10 الی 1500 نوع آلیاژ ریخته می شود .
ماسه سیلیسی معمولی :
این گونه ماسه ها بازیافت می شوند .
ماسه تر : یک ماسه معدنی هستند که در این کارگاه در ریخته گری فولاد استفاده می شوند .
چدن - فولاد - برنز - برنج - AL :
قطعات چدنی چون انجماد خمیری دارند و در موقع انجماد خود را جمع می کنند که پودر زغالی یا دکسترین یک فیلم سطحی تشکیل می دهد .
در این کارگاه محاسبه مواد شارژ ذوب حتی سیستم راهگاهی توسط کامپیوتر انجام می شود . کربن از مرکز قطر اصلی قالب آن را تعیین می کند که نداشتن یک قالب سانتریفوژ که ساختن قالبها گران می باشد ، کوچک کردن قالب با جوش دادن رینگ است .
در ریخته گری سانتریفوژ جرم حجمی طبقه بندی می شود .
جنس قالب ها می توانند انواع مختلف داشته باشند : 1- فولادی
2- گرافیتی
کوره های عملیات حرارتی نیز انواعی دارند : 1- زمین 2- آنیلینگ 3- کوئیچ 4- دستگاه شات بلات
- قالبگیری مدلهای دو تکه با ماهیچه متحرک
این نوع قالبگیری همانند قالبگیری مدلهای یک تکه می باشد ولی با این تفاوت که در اینجا مدل دارای دو تکه است و برای ایجاد حفره یا شیار باید به صورت دستی و با همان ماسه قالبگیری ، ماهیچه بسازیم . ماهیچه سازی در این نوع قالبگیری بدین صورت است که باید جاهایی را که حفره یا شیار دارد از ماسه خالی کنیم و شیب دهیم . سپس مدل رویی را روی مدل زیری قرار داده و ماهیچه را به صورت شیبدار و با دست ، طوری که از ماسه قالبگیری جدا باشد (یعنی بین ماسه ماهیچه و ماسه قالبگیری پودر جدایش بریزیم) می سازیم . به دلیل اینکه ماهیچه قابلیت تحرک و جابه جایی را در هر دو لنگه درجه دارد به «ماهیچه متحرک» مشهور است . در ماهیچه سازی متحرک ، باید در داخل ماهیچه از قانجاق استفاده کنیم .
تعریف قانجاق : قانجاق عبارتست از میله مسی که به شکل ماهیچه ساخته می شود و در وسط آن قرار دارد و لاعث استحکام ماهیچه می شود ، تا هنگام جابهجا کردن ماهیچه نشکند .
قالبگیری زمینی
قالبگیری زمینی همانطور که از اسمش پیداست بر روی زمین صورت می گیرد و برای تولید قطعات بزرگی است که قالبگیری آنها در درجههای کوچک امکان پذیر نیست . در این نوع قالبگیری ممکن است زمین به عنوان درجه زیری باشد و درجه رویی بر روی زمین قرار گیرد . یا ممکن است با استفاده از دو لنگه درجه بزرگ قالبگیری صورت گیرد . اما در این کارگاه به دلیل کمبود درجه مجبور هستیم از زمین به عنوان یک لنگه درجه استفاده کنیم . ماسه خشک را با کمی بنتونیت و آب مخلوط می کنیم و به وسیله الک آن را الک می کنیم تا دانه های درشت و کلوخه های آن گرفته شود . پس از الک کردن ماسه را بر روی زمین به اندازه یک درجه پهن کرده و می کوبیم و سپس صاف می کنیم . در اینجا باید ماسه زیر را تراز کنیم تا سطح کاملاً صاف و یکنواختی داشته باشد . سپس مدل را که می تواند یک پروانه بزرگ یا یک درجه کوچک باشد را روی ماسه قرار می دهیم . در زیر مدل و کناره های آن از پودر تا لک استفاده می کنم . بعد درجه بالایی را روی مدل قرار می دهیم و ان را از ماسه پر می کنیم و می کوبیم . از یک چوب متوسط برای راهگاه و از یک چوب بزرگ به عنوان تغذیه استفاده می کنیم . پس از آنکه قالبگیری تمام شد چهار عدد میخ در چهار گوشه درجه بالایی به عنوان راهنما قرار می دهیم تا موقعی که دوباره خواستیم درجه بالایی را زا زمین جدا می کنیم. پس از همه این کارها نوبت به درآوردن مدل از داخل ماسه می شود. برای این کار باید ابتدا جاهایی از مدل را که با ماسه در تماس است و ممکن است موقع دراوردن مدل ، از جایش بلند شود ، آب می زنیم و سپس مدل را لق می کنیم تا کاملاً مدل در جای خودش حالت بازی داشته باشد . مدل را در می آوریم و به طراحی حوضچه پای راهگاه و کانال اصلی و فرعی می پردازیم . قالب را به وسیله مشعلی که به سیلندر گاز وصل است ، خشک می کنیم و مذاب را که از قبل آماده کرده ایم بوسیله بوته داخل قالب می ریزیم . بعد از اتمام مذاب ریزی حدوداً 20 تا 30 دقیقه طول می کشد تا قطعه سرد شود . قطعه را از داخل ماسه در می آوریم . راهگاه و تغذیه آن را می بریم و ماسه اضافه آن را به وسیله کاردک و برس سیمی تمیز می کنیم . بعد به کمک سوهان اضافات قطعه را می سائیم و بدین ترتیب توانسته ایم یک پروانه بزرگ تولید کنیم .
از مزایای قالبگیری زمینی می توان قابلیت تولید بزرگ با حجم زیاد را نام برد و از معایب آن مشکل بودن این نوع قالبگیری و داشتن وسایلی مانند جرثقیل برای بلند کردن درجه است که در همه کارگاهها یافت نمی شود .
قالبگیری co2 (دی اکسید کربن)
مقداری ماسه co2 را برداشته و الک می کنیم و آن را به مقدار 5 تا 6 درصد با چسب سیلیکات سدیم (آب شیشه) مخلوط می کنیم تا ماسه حالت ترشوندگی به خود بگیرد . سپس مانند قالبگیری معمولی آن را بر روی مدل ریخته و با کوبه می کوبیم . مدل در این نوع قالبگیری به صورت صفحه ای می باشد . به مقدار 5 تا 6 سانتیمتر بر روی مدل را ماسه co2 می ریزیم و با کوبه می کوبیم و بعد بقیه فضای خالی درجه را از ماسه معمولی قالبگیری پر می کنیم . پس از انکه کار قالبگیری یک درجه تمام شد بوسیله چند ضربه به درجه مدل را لق می کنیم واز بالا با سیخ هواکش چند سیخ بر روی ماسه می زنیم تا به مدل برسد . پس از آن از گاز co2 استفاده می کنیم و بوسیله کپسول و تفنگی ان گاز co2 را به آن می دهیم . در اثر واکنش گاز co2 با چسب آب شیشه ماسه استحکام خوبی پیدا می کند . لنگه دوم درجه را نیز به همراه راهگاه بدین صورت قالبگیری کرده و با گاز محکم می کنیم . بعد از این مدل را از درجه جدا کرده و قالب را بدون خشک کردن اماده مذاب ریزی می کنیم این نوع قالبگیری دارای مزایا و معایبی نیز هست که در زیر به ان اشاره می شود :
از مزایای این نوع قالبگیری می توان استحکام خوب و قدرت نفوذ گاز بالا و همچنین صافی سطح ریختگی اشاره کرد .
در قبال این مزایا دارای محدودیتهایی نیز هست که از ان جمله می توان قدرت فروپاشی کم و مشکل بودن تهیه چسب سیلیکات سدیم و همچنین جابه جا کردن کپسولهای بزرگ حاوی گاز دی اکسید کربن نام برد . از این نوع ماسه (ماسه co2) برای ماهیچه سازی نیز استفاده می شود .
ماهیچه سازی
گاهی اوقات مجبوریم برای ایجاد حفره یا شیار یا سوراخ در یک قطعه تولید از دریل یا دستگاه تراشکاری استفاده کنیم . اما این وسایل هم دارای هزینه زیادی است و هم وقت زیادی را جهت انجام کار صرف می کند . بدین منظور از ماهیچه در قالبگیری استفاده می کنند ماهیچه یا به صورت ، ماهیچه سرخود در قالب جای می گیرد که از همان ماسه قالبگیری برای ماهیچه سازی استفاده می شود یا اینکه ماهیچه به روشهای دیگری ساخته شده و درون قالب جای می گیرد . توضیحات مربوط به ماهیچه سازی سرخود که از جنس مواد قالب است در قبل آورده شده است اما ماهیچه سازی جداگانه به دو روش ساخته می شود . روش اول همان روش قالبگیری co2 است فقط در اینجا به جای قالبگیری و قالب ، ماهیچه ساخته می شود . و اما روش دوم ماهیچه سازی با ماسه چراغی می باشد . ماسه چراغی یک نوع ماسه نرم و ریزدانه است که دارای رنگ زرد است و در مقابل اتش و حرارت واکنش نشان داده و محکم می شود . روش کار بدین ترتیب است که ابتدا قالبهایی که با نام جعبه ماهیچه مشهورند را برداشته و آنها را جفت می کنیم و با گیره دستی آنها را به همدیگر محکم می کنیم تا از جایشان تکان نخورند . سپس مشعل را به جعبه ماهیچه که از جنس چدن می باشد می گیریم تا c 250-200 گرم شود . سپس یک صفحه زیر سوراخ جعبه ماهیچه می گذاریم تا ماسه بیرون نریزد و از طرف دیگر ماسه چراغی را داخل جعبه ماهیچه می ریزیم بر اثر تماس ماسه چراغی با جعبه ماهیچه داغ ، ماسه سخت و محکم میشود. بعد از این گیره دستی را باز می کنیم و به وسیله چند ضربه ماهیچه را از داخل جعبه ماهیچه در می اوریم و بدین ترتیب می توانیم ماهیچه سازی کنیم و درون قالب جای دهیم . از محدودیتهای این نوع ماهیچه سازی به خطرناک بودن آن و احتمال سوختگی ماهیچه ساز می توان اشاره کرد .
چدن نشکن (چدن با گرافیت کروی) :
مزایای این نوع چدن عبارتست از :
1- این چدن دارای مزایای چدن خاکستری بنابراین قابلیت ریخته گری قطعات با اشکال پیچیده را دارد .
2- این چدن دارای مزایای مهندسی بالا است . استحکام مکانیکی بالا ، قابلیت تغییر شکل بالا و مدول الاشیشه بالا
3- چدن نشکن قابلیت نورد ، آهنگری ، عملیات حرارتی را دارا می باشد . استحکام کششی این چدنها g/mm 40 است
4- مثل چدنهای خاکستری خواص آنها تابع توزیع ، اندازه و شکل و … گرافیتها می باشد (اما نه بشدت چدنهای خاکستری)
5- استحکام بین KPSI 150-60 را دارا هستند و %25-1 IEL
در ساخت قطعات ماشین آلات موتور کششی ، موتور تجهیزات کشاورزی ، محورهای انتقال قدرت ، میل لنگ ، دیسک کلاچ ، پمپ کمپرسی و … استفاده می شود .
انجماد این چدنها در تحت انجماد بیشتری صورت می گیرد یعنی F 120 اما چدن خاکستری در F 60
مراحل تولید چدن با گرافیت کروی :
1- انتخاب شارژ فلزی و ذوب آن
2- عملیات گوگردزدایی (زیرا گوگرد یکی از عناصری است که از تشکیل گرافیت کروی جلوگیری می کند )
3- عملیات کرو کردن
4- جوانهزنی مذاب
روشهای افزودن فروسیلسیم منیزیم (%5/2 وزنی مذاب) به مذاب چدن نشکن :
منیزیم (MG) به علت دارا بودن وزن مخصوص کم در سطح مذاب چدن قرار خواهد گرفت . همینطور نقطه جوش آن C 1100 است که به خاطر اختلاف دما با مذاب چدن به بخار تبدیل می شود . همچنین میل ترکیبی زیادی با عوامل محیطی دارد . به همین دلیل باید با استفاده از روشهای زیر فرو سیلسیم منیزیم را به مذاب اضافه کرد :
1- روش فروبری : در این روش مواد حاوی منیزیم را داخل یک قوطی سوراخ دار ریخته و آن را داخل مذاب فرو می برند بدین ترتیب می توان منیزیم را به مذاب اضافه کرد . این روش بازیابی حدود %65 دارد .
2- روش ساندویچی : براساس همین روش در کف پاتیل پله ای ایجاد می کنند و مواد منیزیم دار را داخل قسمت پائین پله قرار می دهند و روی آن را به وسیله یک ورق فلزی می پوشانند . بدین ترتیب منیزیم را به مذاب اضافه می کنند این روش بازیابی حدود % 80 دارد .
3- روش روریزی : یکی دیگر از روشهای اضافه کردن منیزیم به مذاب چدن روش روریزی است . بدین صورت که منیزیم را روی سطح مذاب می پاشیم و بلافاصله روی آن را کاورال (که نقش پوشش دارد)می ریزیم تا از بخار شدن منیزیم جلوگیری کند . این روش بازیابی حدود %20 را دارد . به همین دلیل کمتر از آن استفاده می شود
4- اضافه کردن منیزیم در سیستم راهگاهی : در این روش مواد حاوی منیزیم را در یک قسمت از سیستم راهگاهی گذاشته تا پس از ورود مذاب با هم ترکیب شوند و به داخل قالب راه پیدا کنند . این روش بازیابی حدود %95 را دارد و بهترین روش محسوب می شود .
تئوری ریخته گری فولاد ها
ریخته گری قطعات فولادی در بیشتر رشته های صنعت به کار برده می شود. قطعات فولادی از چند گرم تا چند تن ریخته گری می شوند . کلاسه بندی این قطعات خیلی مشکل است . فولاد دارای استحکام وشکل پذیری بالائی بوده و در برابر تنشهای بالا ومرکب وتحت بارهای ضربه ایستادگی می کند . فولاد های الیاژی مخصوص ، دارای مشخصات مکانیکی خوب در دمای بالا ومقاومت خردگی ، مقاومت نسوزندگی ،مقاومت سایشی خوب می باشد . این فولاد ها روز به روز کار بردهای زیادی پیدا میکند . فولاد از نظر ترکیب شیمیایی دو گره اصلی به ترتیب فولاد های کربنی و فولاد های آلیاژی تقسیم بندی می شوند .فولاد های کربنی در بین خودشان به ترتیب به فولاد های کم کربن (0.09-0.2)در صد کربن ،کربن متوسط (0.2-0.45) در صد کربن و پر کربن (0.5) در صد کربن و بالا منشعب می شوند .فولاد های آلیاژی نیز به سه گروه تقسیم می شوند که عبارتند از: فولاد های کم آلیاژ (حد اکثر2.5% عناصر الیاژی )،الیاژ متوسط (2-10% عناصر آلیاژی)وپرآلیاژ (بیشتر از 10% عناصر الیاژی).
دسته بندی | گزارش کارآموزی و کارورزی |
فرمت فایل | doc |
حجم فایل | 27 کیلو بایت |
تعداد صفحات فایل | 33 |
گزارش کارآموزی ریختهگری در کارخانه ذوب فلزات ایمنکار در 29 صفحه ورد قابل ویرایش
فهرست مطالب
عنوان صفحه
مقدمه
مشخصات فیزیکی 1
مشخصات ریخته گری ذوب 2
تقسیم بندی آلیاژها 3
آلیاژسازها (Hardeners) 7
کنترل ترکیب 10
برگشتی ها و قراضه ها 12
گاززدایی Degassing 17
اکسیژن زدایی 20
احیاء کننده ها 21
فلاسک های گازی 23
تصویه : فیلتر کردن 25
جوانه زاها Grainrefiners 27
آلومینیوم مس 33
تولید آلیاژ 36
آلومینیوم – سیلیسیم 37
تولید آلیاژ 38
ماهیچه 40
- قسمت ماهیچه سازی 42
- قسمت ریخته گری 43
-سالن ویبراسیون 45
-مراحل سنگ زنی و تراشکاری 46
-تست عملیات حرارتی 46
-کوره aging 47
-قسمت کنترل 48
-مرحله شستشو 50
مشخصات فیزیکی
آلومینیم یکی از عناصر گروه سدیم در جدول تناوبی است که با تعداد پروتون 13 و نوترون 14 طبقه بندی الکترونی آن به صورت زیر می باشد :
(1S2);(2S2)(2P6);(3S2)(3P1)
که در نتیجه می توان علاوه بر ظرفیت 3 ، ظرفیت 1 را نیز در بعضی شرایط برای آلومینیم در نظر گرفت .
آلومینیم از یک نوع ایزوتوپ تشکیل شده است و جرم اتمی آن در اندازه گیری های فیزیکی 9901/26 و در اندازه گیری های شیمیایی 98/26 تعیین گردیده است . شعاع اتمی این عنصر در 25 درجه سانتی گراد برابر 42885/1 آنگسترم و شعاع یونی آن از طریق روش گلداسمیت برابر A57/0 بدست آمده است که در ساختمان FCC و بدون هیچ گونه تغییر شکل آلوتروپیکی متبلور می شود .
مهمترین آلیاژ های صنعتی و تجارتی آلومینیم عبارت از آلیاژ های این عنصر و عناصر دوره تناوبی سدیم مانند منیزیم ، سیلیسیم و عناصر دوره وابسته تناوب مانند مس و یا آلیاژ های توام این دو گروه است .
(Al-CuMgSi);(Al-CuMg);(Al-SiMg);(Al-Cu);(Al-Si);(Al-Mg)
سیلیسیم و منیزیم با اعداد اتمی 14 و12 همسایه های اصلی آلومینیم می باشند و بسیاری از کاربرد های تکنولوژیکی آلومینیم بر اساس چنین همسایگی استوار است .
ثابت کریستالی آلومینیم A0414/4 = a و مطابق شرایط فیزیکی قطر اتمی آن 8577/2 = dAl می باشد . بدیهی است حلالیت آلومینیم به نسبت زیادی به قطر اتمی بستگی دارد و مطابق آنچه در مباحث متالوژی فیزیکی بیان می گردد ، اختلاف قطر اتم های حلال و محلول نباید از 15 % تجاوز نماید ، در حالی که شکل ساختمانی و الکترون های مدار آخر نیز در این حلالیت بی تاثیر نیستند .
مشخصات ریخته گری و ذوب
آلومینیم و آلیاژ های آن به دلیل نقطه ذوب کم و برخورداری از سیالیت بالنسبه خوب و همچنین گسترش خواص مکانیکی و فیزیکی در اثر آلیاژ سازی و قبول پدیده های عملیات حرارتی و عملیات مکانیکی ، در صنایع امروز از اهمیت زیادی برخور دارند و روز به روز موارد مصرف این آلیاژ ها توسعه می یابد . عناصر مختلف مانند سیلیسیم ، منیزیم و مس در خواص ریخته گری و مکانیکی این عنصر شدیداً تأثیر می گذارند و یک رشته آلیاژ های صنعتی پدید می آورند که از مقاوت مکانیکی ، مقاوت به خورندگی و قابلیت ماشین کاری بسیار مطلوب برخوردارند . قابلیت جذب گاز و فعل و انفعالات شیمیایی در حالت مذاب از اهم مطالبی است که در ذوب و ریخته گری آلومینیم مورد بحث قرار می گیرد .
تقسیم بندی آلیاژ ها
آلیاژ های آلومینیم در اولین مرحله به دو دسته تقسیم می گردند :
الف ) آلیاژ های نوردی (Wrought Alloys) که قابلیت پزیرش انواع و اقسام کارهای مکانیکی ( نورد ، اکستروژن و فلز گری ) را دارند .
ب ) آلیاژ های ریختگی (Casting Alloys) که در شکل ریزی و ریخته گری های آلومینیم با گسترش بسیار مورد استفاده اند . آلیاژ های نوردی که در مباحث شکل دادن فلزات مورد مطالعه قرار می گیرند از طریق یکی از روش های شمش ریزی (مداوم ، نیمه مداوم ، منفرد ) تهیه می گردند و پس از قبول عملیات حرارتی لازم ، تحت تاثیر یکی از زوش های عملیات مکانیکی به شکل نهایی در می آیند .
آلیاژ های ریختگی آلومینیم که مورد بحث این پروژه نیز می باشند از طرق مختلف ریخته گری ( ماسه ای ، پوسته ای ، فلزی و تحت فشار )شکل می گیرنند و مستقیماً و یا بعد از عملیات حرارتی ( در صورت لزوم )در صنعت استفاده می شوند .
در مورد آلومینیم و سایر آلیاژ ها کشور های مختلف استاندارد های متفاوتی به کار می برند که مشخصه درجه خلوص و یا میزان نا خالصی ها و سایر ترکیبات آلیاژ می باشد . استاندارد آلیاژ های آلومینیم علاوه بر مشخصه های ارقامی که در جداول 1 و 2 درج گردیده است به کمک رنگهای اصلی نیز آنجام می گیرد . نمونه چنین رنگهایی در استاندارد انگلیسی عبارت است از :
آلومینیم خالص رنگ سفید
آلومینیم ـ مس رنگ سبز
آلومینیم ـ منیزیم رنگ سیاه
آلومینیم ـ مس ـ نیکل رنگ قهوه ای
آلومینیم ـ روی ـ مس رنگ آبی
آلومینیم ـ سیلیسیم (منیزیم ) رنگ زرد
آلومینیم ـ سیلیسیم ( مس ) رنگ قرمز
در ایران متأسفانه هنوز استانداردی برای صنایع آلومینیم بکار نمی رود و به رابطه کارخانه با کشور های مختلف سیستم های متفاوت انگلیسی ، امریکایی ، بلژیکی و غیره بستگی دارد. مقایسه استاندارد های مختلف جهانی تقریباً مشکل و در مورد آلیاژ های ریختگی نیز با اندک تفاوت چنین مقایسه ای آمکان پذیر می باشد .
آلیاژ سازها (Hardeners)
این عناصر که به نام های Temper Alloys و Master Alloysنیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیم به کار می روند ، زیرا آلومینیم با نقطه ذوب کم اغلب قادر به ذوب و پذیرش مستقیم عناصر با نقطه ذوب بالا نیست (مس 1083 درجه ، منگنز 1244 درجه ، نیکل 1455 درجه ، سیلیسیم 1415 درجه ، آهن 1539 درجه و تیتانیم 1660درجه سانتی گراد ) . همچنین عناصر دیگری که نقطه ذوب بالا ندارند ، دارای فشار بخار وشدت تصعید و اکسیداسیون می باشند که در صورت استفاده مستقیم درصد اتلاف این عناصر شدیدا افزایش می یابد ( منیزیم ، روی ) . ترکیب شیمیایی و نقطه ذوب بعضی از آلیاژ ها که در صنایع آلومینیم به کار می رود .مشخصات متالوژیکی آلیاژ ها در فصل جداگانه ای مورد مطالعه قرار خواهد گرفت . تهیه آلیاژ ساز ها معمولا در کار گاههای ریخته گری نیز انجام می گیرد در این مواقع اغلب روش های زیر مورد استفاده است .
معمولا قطعات عنصر دیر ذوب را ریز نموده و در فویل های الومینیمی پیچیده و یا در شناور های گرافیتی قرار داده ودر داخل مذاب الومینیم (800 درجه تا 850 درجه تحت فلاکس )فرو می برند و سپس آن را به هم میزنند.
گاز زدایی (Degassing)
همانگونه که در مباحث قبل و کتاب اصول ریخته گری تشریح گردیده است گاز های محلول در مایع بعد از انجماد به دلیل تنش سطحی مذاب و عدم امکان خروج کامل به صورت حباب هایی با اندازه های مختلف در قطعه ریخته شده باقی می مانند که خواص مکانیکی و وزن مخصوص قطعه را شدیدا کاهش می دهند . در مورد ذوب آلیاژ های آلومینیم ، هیدروژن تنها گازی است که به صورت محلول در مایع و حباب در جامد ظاهر می گردد و از این رو عملیات گاز زدایی (هیدروژن زدایی ) در ذوب آلومینیم و آلیاژ های آن از اهمیت خاص برخوردار است . میزان حلالیت هیدروژن در مذاب آلومینیم به درجه حرارت و فشار خارج ( نسبت به فشار داخل ) بستگی دارد و همین امر پایه و اساس گاز زدایی آلومینیم را تشکیل می دهد . لذا کنترل درجه حرارت برای اجتناب از جذب گاز که بایستی حد اقل ممکن باشد اولین عاملی است که در جریان ذوب مورد توجه قرار می گیرد . معمولا درجه حرارت مذاب را 720ـ740 درجه سانتی گراد اختیار می کنند تا علاوه بر تحدید حلالیت گاز از سیالیت نسبتا مناسب و ویسکوزیته کم برخوردار باشد .
ـ ذوب در خلاء (فشار کم )
ذوب در خلاء به دلیل عدم وجود گاز های محیطی ، علاوه بر تقلیل میزان هیدروژن از شدت اکسیداسیون و امکان وجود سایر ترکیبات غیر فلزی نیز می کاهد . مهمترین اصل در این روش تقلیل فشار خارجی است که در نتیجه حلالیت هیدروژن را به نسبت زیادی تقلیل می دهد . این روش در صنایع امروز در حال توسعه است .
ـ گاز زدایی با گاز های بی اثر
افزودن گاز های بی اثر مانند ازت و ارگون باعث آن می گردد که فشار نسبی داخل مذاب افزایش پیدا کرده و در نتیجه از حلالیت هیدروژن کاسته شود.
آزمایشات رانسلی (Ransley) نشان می دهد که چنانچه گاز ارگون یا ازت به مقدار cc1 بر دقیقه به داخل مذاب رانده شود فشار داخلی راندمان استخراج هیدروژن برابر 52% است و چناچه گاز بی اثر برابر دقیقه/cc5 به داخل مذاب دمیده می شود :
بایستی توجه داشت که که در آن a درصد هیدروژن در مخلوط گازی می باشد و از این رو گاز های بی اثر مانند ارگون ، هلیم و ازت (در صورت عدم وجود منیزیم ) می توانند به عنوان مواد دگازر به کار روند .
آلومینیم مذاب معمولا توسط آرگون خشک برای تقلیل فشار خارجی ( افزایش فشار داخلی )به نسبت گاز زدایی می شود که در نتیجه مقدار هیدروژن را از 34/0 سانتی متر مکعب بر 100 گرم به 034/0تقلیل می دهد و معمولا این عمل در کوره های بوته ای ثابت توسط کپسول های گاز ارگون (مخلوط گازی ) انجام می شود .
ترکیب فلوئور مضاعف سدیم سیلیسیم( Na2SiF6) نیز که در درجه حرارت مذاب تجزیه می شود و گاز {F4Si } را که نسبت به مذاب آلومینیم بی اثر است ، تولید می کند نیز با همان نتایج گاز های ازت و ارگون روبرو است جز آنکه سدیم حاصل نمی تواند در آلیاژ های منیزیم دار به کار رود .
تولید آلیاژ
مس به دلیل نقطه ذوب بالا ، 1083 درجه سانتی گراد ، به صورت خالص به آلیاژ اضافه نمی شود و بیشتر از آمیژان 50-50و آمیژان اوتکتیک 33-67 استفاده می کنند برای ساخت آمیژان ها ابتدا مس را ذوب می کنند و از ایجاد حرارت فوق ذوب جلوگیری نموده و آلومینیم را در قطعات کوچک و به دفعات 4تا 5 مرتبه به آن می افزایند . در عمل بعد از ذوب آلومینیم ، درجه حرارت فوق ذوب را تا 30درجه بالا می برند و سپس آمیژان را به نسبت مورد لزوم به آن می افزایند .کلیه عملیات کیفی مذاب بعد از افزایش مس آنجام میگیرد و فقط فلاکس های پوششی قبل از افزایش آمیژان مس همواره با شارژ به بوته داده می شوند .
آلومینیم –سیلیسیم
سیلیسیم در تمام آلیاژ های تجارتی آلومینیم وجود دارد و در انواع آلیاژ های ریخته گری و به خصوص در سیلومین ها مقدار آن تا 13 درصد می رسد .
از دیاگرام تعادل این دو عنصر نتیجه می گردد که حلالیت سیلیسیم در آلومینیم در درجه حرارت محیط نا چیز است و از 05/0درصد تجاوز نمی کند و سیلیسیم نا محلول با فاز آلومینیم با حلالیت نا چیز در شبکه ساختمانی خود باقی می ماند که دارای ساختمان اوتکتیکی و درشت و سوزنی شکل است و بهمین دلیل به وسیله سدیم شبکه آن را ظریف می کنند . تاثیر سیلیسیم در خواص مکانیکی آلیاژ آلومینیم به ساختمان میکروسکوپی و چگونگی انجماد آن بستگی دارد و از این رو این آلیاژ در شرایط مختلف تولید ( ماسه ، فلزی ، تحت فشار ) خواص متفاوتی دارد که در شکل 4 مشخصات کلی آن درج گردیده است و از آنها چنین استنباط می گردد که قالب های فلزی ، بهترین نتیجه را در ریخته گری این آلیاژ دارد.
این آلیاژ ها عملیات حرارتی بخصوصی ندارند و خواص مکانیکی آنها تغییرات عمده ای در اثر عملیات محلولی و پیر سختی ندارد . سیلیسیم با افزایش سیالیت آلیاژ (ترکیب اوتکتیک ) و کاهش درصد جذب گاز تسهیل انجماد پوسته ای ،خواص ریخته گری آلیاژ را بهبود می بخشد و از این نظر آلیاژ بسیار مناسبی می باشد .
تولید آلیاژ
سیلیسیم معمولا به صورت آمیژان آلومینیم – سیلیسیم با ترکیب 13% یا22% سیلیسیم به مذاب افزوده میشود که این آلیاژ در اثر القاء سیلیسیم خورد شده به مذاب آلومینیم ، تولید می گردد . سیلومین ها به سهولت در آلومینیم مذاب حل می شوند . نقطه ذوب آنها حدود 580درجه سانتی گراد می باشد . بایستی توجه داشت که اعمال دگازین و فلاکسینگ همواره قبل از ظریف کردن با سدیم انجام می گیرد .
مشخصات قالب
آلیاژ های آلومینیم با کلیه روش های مختلف ریخته گری ( ماسه ، کچ، پوسته ای ، سرامیک )و در قالب های فلزی و تحت فشار قابلیت ریخته گری دارد . تمام آلیاژ های صنعتی و تجارتی این عنصر با یکی از طرق فوق تولید می گردد که در آن میان ریخته گری در ماسه ، در قالب های فلزی و تحت فشار از گسترش بیشتری برخوردار است . به دلیل نقطه ذوب و وزن مخصوص کم این آلیاژ ها قالب های مورد استفاده کم تر تحت تاثیر واکنش های حرارتی و هیدرو استاتیکی مذاب قرار می گیرنند و از این رو سطح ریختگی و دقت ابعاد آن از کیفیت بهتری نسبت به سایر آلیاژ های سنگین و آهنی برخوردار است . مشخصات مختلف قالب ها و مواد آن در سایر کتب ریخته گری تدوین گردیده است و در این مبحث به اختصار ، قالب ها و مواد آن مورد مطالعه قرار می گیرند .
لازم به تذکر است که روش ریخته گری و کنترل کیفی مذاب و کیفیت شرایط ریخته گری در خواص مکانیکی محصول نهایی از اهمیت ویژه ای برخوردار است و فقط ترکیب شیمیایی آلیاژ نمی تواند خواص مکانیکی و فیزیکی را تعیین مثی کند . در جدول های بخش پنجم نمونه ای از تغییرات خواص نشان داده شده ودر جدول زیر تاثیر روش ریخته گری در خواص مکانیکی دو نوع آلیاژ مختلف آلومینیم مشخص گردیده است .
ماهیچه
انواع ماسه های نرم سیلیسی همراه با چسب های روغنی ، رزینهای فنلی ، سیلیکات سدیم و انواع چسب های گرم و سرد در ساخت ماهیچه های آلومینیم ریزی بکار می روند که مشخصات کلی زیر را دارند :
الف) نرم و ریز هستند
ب)گاز بسیار کمی تولید می کنند
پ)استحکام زیادی ندارند و فقط نیرو های در حمل و نقل و در جا گذاری را تحمل می کنند .
ت)قابلیت از هم پاشیدگی سریع دارند .
تا جمعاً علاوه بر ایجاد سطوح ساف و عدم تخلخل در سطح ، در مقابل انقباض آزاد آلیاژ مقاومتی نداشته باشند . مشخصات عمده چسب های ماهیچه در صنایع آلومینیم ریزی در جدول زیر درج گردیده است .