دسته بندی | فنی و مهندسی |
بازدید ها | 0 |
فرمت فایل | doc |
حجم فایل | 25 کیلو بایت |
تعداد صفحات فایل | 22 |
مقاله اثر سولفیدهای آروماتیک بر روی سرعت و گزینش پذیری واکنشهای تبدیلی هیدروکربنها در 22 صفحه ورد قابل ویرایش
Steam Cracking of Hydrocarbons. 6 effect of Dikenyye Sulyt and Dibuyyle Dinalide On Reactim Kinetice and Coring
در این مقاله به اثر سولفیدهای آروماتیک بر روی سرعت و گزینشپذیری واکنشهای تبدیلی هیدروکربنها. همینطور تشکیل گرمایی که در لولههای فولاد ضدزنگ در راکتورها پرداخته شده است که سرعت از بین رفتن هپتان (در 100kp, 7000c و نسبت ) تا حدود 16-26% افزایش مییابد و اگر 1/0 تا 1% جرمی دیبنزیل سولفید به چپتان افزوده شود گزینشپذیری کاهش مییابد. و افزودن 1% چربی دیسولفید دیبنزیل موجب افزایش تجزیه شیمیایی هپتان تا حدود 8% میشود. افزایش این ترکیبات (5/0%- 1/0 جرمی) در خوراک ورودی پدیده ککینگ را تا 70% در کورههای پیرولیز در دمای 8200c بدون حضور بخار کاهش میدهد و کاهش کک گرفتگی در عوض موجب افزایش مقدار موجودی آروماتیکها در محصولات مایع پیرولیز میگردد. این نتایج با استفاده از گاز کروماتوگرانی با لوله موئین و اسپکترومتری جرمی بدست آمده است.
مقدمه:
تولید الفینهای سبک حاصل از پیرولیز هیدروکربنها به روشهای متعددی صورت میپذیرد. افزودنیهای خاصی موجب کاهش دمای مورد نیاز برای پیرولیز شده و میزان تبدیل رادیکالی را افزایش میدهد و موجب افزایش انعطافپذیری در فرآیند پیرولیز شده و گزینشپذیری را بالا میبرد. اخیراًتحقیقات گستردهای در جهت ساخت این ترکیبات (همگن و غیرهمگن) آغاز شده است. ترکیباتی که بر روی فرآیند پیرولیز در مراحل مختلف مؤثر باشند مثل (شروع کنندهها، کاتالیتها و فعال کننده و …) و موادی که از پیرولیز محصولات غیردلخواه جلوگیری نماید مانند (بازدارندهها و متوقفکنندهها). کاربرد این مواد محدود به تأثیرگذاری- در دسترس بودن و قیمت آنها میباشد. ترکیباتی که بتوانند روی فرآیندهای رادیکالی مربوط به تجزیه گرمایی مواد آلی و معدنی، نیتروژن، اکسیژن، سولفورو فسفر مؤثر باشند.
ترکیبات گوگردی نه تنها روی واکنشهای اولیه اثر میگذارند بلکه بر روی واکنشهای ثانویه که موجب پدید آمدن مشکلات قابل ملاحظهای هستند نیز مؤثرند. از مثالهای آن میتوان به اثر هیدروژن سولفید بر سینتیک و گزینشپذیری و تبدیل هیدروکربنها اشاره کرد. تحقیق بر روی سایر ترکیبات گوگردی که بتوانند در پیرولیز هیدروکربنها به اولفینها مؤثر باشند ادامه دارد. آروماتیک سولفیدها روی سولفیدها که به رادیکالهای پایدار تجزیه میشوند نیز مورد توجه هستند این ترکیبات شامل دیبنزیل سولفید و دیبنزیل دی سولفید هستند. تأثیر این مواد بر روی سرعت تبدیل و تشکیل کک در پیرولیز هیدروکربونها مورد مطالعه است. تمام این آزمایشات در 2 جریان در راکتورهای لولهای فولاد ضد زنگ که دارای سطح داخلی بزرگی هستند انجام میپذیرد. نقش دیبنزیل دیسولفید و دیبنزیل سولفید روی گزینشپذیری و تبدیل هپتان در مقاله قبلی توضیح داده شده است. راکتور این واکنش از نوع Tubein-Tabe با نسبت سطح به حجم حدود 6.65cm میباشد. ترکیب درصدهای جرمی در این راکتور به قرار زیر است. کروم 16.8% نیکل 10.7%، 101%Mn و کربن %0.08 و هپتان با شدت وارد میشود. دمای عملیاتی 7000c میباشد با توجه به سهم و اثر مهم سطح داخلی، بخار با بعضی از ترکیبات واکنش مخصوصاً آنهایی که وزن مولکولی زیادی دارند و آنهایی که پتانسیل بالایی در تشکیل کک دارند واکنش میدهد. نسبت جرم آب به هپتان است. مقدار آب 57/2 تا 85/5 است. این راکتورها u شکل بوده و آن 6.66-1cm است و ترکیب درصد اجزاء مطابق مقابل میباشد. C 0.18%, Mn 0.7%, Ni 904%, Cr 17.5%. اثر دیبنزیل دیسولفید و دی بنزیل سولفید به تشکیل کک در پیرولیز
Reformer Raffinate گرفته شده از قسمت کاتالیست ریفرمینگ نفتا بعد از استخراج آروماتیک، مورد بررسی قرار گرفته است. این پس ماند (با رنج تقطیر (27-1560c) دارای ترکیب درصد زیر است.
آلکان غیرشاخهای 8/18%، آلکان شاخهدار 4/60% آلکان حلقهای 3/10% و آروماتیک 6% و باقی مانده محصولات در حدود 5/4% است. شدت جریان حدود molhr-10.3 است. پیرولیز بدون حضور بخار و در 820 درجه سانتیگراد و فشار KP 100 انجام میشود. مقدار کک تشکیل شده از روی وزن کردن راکتور قبل و بعد از آزمایش مشخص میشود. تجدید دوباره راکتور قبل از هر آزمایش مهم میباشد. سوزاندن کک قبل از هر آزمایش با هوا و ترکیب درصد اکسیدهای فلزی و با حل در اسید (H2CO43% + HCl 3%) انجام میشود. وقتی که راکتور تجدید شد مطابق انحراف استاندارد آن از 5% به 12% تغییر میکند.
حجم معادل راکتور (VR) از پروفایل دمایی غیر ایزوترمال راکتور طبق Watson, Hougen مشخص شده است. و زمان اقامت در آن همانطور که توضیح داده شد تعیین میگردد. ترکیب درصد مخلوط محصولات مایع و گازی در برجهای پر شده با عمل گاز کروماتوگرافی تعیین شده است. محصولات مایع قبلاً با مقدار زیاد حل گاز کروماتوگرافی محاسبه شده بودند لوله موئین که با فاز ساکن SE - 30 پوشانده شده است با فاز متحرک گاز هلیم کار میکند و جداسازیها در تحت دمای برنامهریزی شده صورت میگیرد. برای یافتن ترکیبات گوگردی لوله موئین در گاز کروماتوگراف قرار میگیرد که با مشعلهای موازی یونیزاسیونی و آشکار کنندههای فتومتریک (FPD) تجهیز شدهاند. ستون به صورت مستقیم در منبع یونها قرار میگیرد و آنالیزهای کمی انجام می شود.
نتایج:
1) سرعت تجزیهای حرارتی:
تجزیه هپتان در دمای 700 درجه سانتیگراد و با زمان اقامت 0.02- 0.12 S در حضور 0.1-0.05 تا 1% از دیبنزیل سولفید و 1% دیبنزیل دیسولفید انجام گرفت. وابستگی تبدیل هپتان به زمان اقامت برای 3 ترکیب درصد مختلف دیبنزیل سولفید و دیبنزیل دیسولفید در شکل 1 نشان داده شده است. نتایج در 2 پروفایل دمایی بدست آمده است. برای پروفایل دمایی اول حجم معادل حدود cm 7-5 است. پروفایل دمایی دوم باریکتر بوده و حجم معادل آن cm 4-5 است. میانگین مقادیر حجم معادل جدول 1 آمده است.
برای مشخص شدن مرتبه واکنش تجزیه هپتان از روش Kershenba Martin استفاده شده است. برای تبدیل هپتان مقدار مرتبه واکنش در حضور دیبنزیل سولفید و دیبنزیل دیسولفید در حدود یک است. شکل 2 بدست آوردن مرتبه واکنش تجزیه هپتان را در حضور 1% دیبنزیل سولفید در پروفایل دمای ثابت و فشار ثابت نشان میدهد. معادله روبرو برقرار است.
حاصل محاسبات مقدار 07/1 میباشد. قسمت سمت راست معادله تابعی از زمان اقامت برای معادل شدن دیبنزیل سولفید و دیبنزیل دی سولفید است که در شکل 3 نشان داده شده است. مقدار ریت ثابت تبدیل هپتان بدون سولفور تحت آزمایش مشابهی صورت گرفته است. با توجه به محاسبات عددی مقدار ماکزیمم ریت ثابت انحراف حدود 6/9% در میآید. درصد تبدیل اثر خاصی روی ریت ثابت ندارد. میتوان نتیجه گرفت که دیبنزیل سولفید ودیبنزیل دیسولفید موجب شتاب گرفتن واکنش تجزیه حرارتی هپتان میشوند در این حالت دیبنزیل سولفید 16 تا 26% و دیبنزیل دیسولفید حدود 8% این کار را میکند در شرایط مقایسهیا میزان تجزیه هپتان در حضور 5/0 -1/0% تیوفن در حدود 14% افزایش مییابد و در حضور 02/0% گوگرد تا حدود 28% افزایش پیدا میکند.
2) گزینشپذیری تجزیه حرارتی:
در تجزیه هپتان در حضور دیبنزیل سولفید و دیبنزیل دیسولفید 35%-10 محصولات در فاز گازی تشکیل میشوند بسته به درصد تبدیل شکل 4 در 18 درجه سانتیگراد محصولات گازی شامل هیدروژن، مونواکسیدکربن و محصولات حاصل از تجزیه و هیدروکربنهای C4 و مقدار کمی heptane, 1 heptane, 1 hexene, 1 pentane هستند.
تفاوت در محصولات گازی برای مقادیر مختلف گوگرد در 2 پروفایل دمایی قابل صرفنظر است. محصول با انحراف استاندارد کمتر از 2/4% بدست آمده است. جرم مولکولی میانگین محصولات گازی 1/28-5/24 است.
چه ترکیب کمی و چه کیفی با لک محصولات گازی و مایع در جدول 1 و 3 آورده شده است. حضور دیبنزیل سولفید و دیبنزیل دیسولفید هیچ تأثیری بر کیفیت اجزا ندارد. در میان محصولات واکنش اتان موقعیت مناسبتری دارد. محصولات اصلی 1hexene,1pentene هیدروژن و مونوکسیدکربن هستند. اثر زمان اقامت به گزینشپذیری تبدیل هپتان در حضور دیبنزیل سولفید و دیبنزیل دی سولفید در شکلهای 5 تا 7 نشان داده شدهاست. در شکلهای 8 و 9 تأثیر دیبنزیل سولفید و دیبنزیل دیسولفید به تریتب در شرایط پروفایل دمایی I را نشان میدهد. با افزایش زمان اقامت تشکیل، اتن، پروپن، متان افزایش مییابد در صورتی که شتکیل ابوتن، 1 پنتن، 1 هگزن کاهش مییابد. با وجود هیدروژن ومونواکسیدکربن تأثیر زمان اقامت دارای ابهام است. زیرا به واکنشهای ثانویه ربط پیدا میکند. در حضور 1% دیبنزیل سولفید گزینشپذیری تبدیل اتان تحت شرایط پروفایل دمایی II بهتر انجام میشود. شکل 7 و 8 با استفاده از یک پروفایل دمایی (TPI) و 1% سولفور تجزیه هپتان به اتان با گزینشپذیری بیشتری انجام میشود. تأثیر حضور دیبنزیل سولفید در تبدیل میانگین 17-16% در تشکیل اتان در شکل 10 نشان داده شده است. با افزایش مقدار دی بنزیل سولفید گزینشپذیری تبدیل هپتان به اتان کاهش مییابد.
مواد و روشها:
تجزیه حرارتی هپتان و Reformer Raffinate در 2 حالت وجود و بدون حضور تیوفن مورد بررسی قرار میگیرد . راکتور لولهای فولاد ضدزنگ با سطح داخلی خیلی زیاد مورد استفاده قرار دارد. تجهیزات آزمایشگاه که در آنها سرعت و تبدیل مورد بررسی قرار میگیرد قبلاً توضیح داده شده است. نوع راکتور Tube-in-Tube با نسبت 65/6 cm-1 است. ترکیب درصد مواد به قرار زیر میباشد Cr 8/16% نیکل 7/10%، Mn 101%، c 08/0% و شدت مولی هپتان ورودی 13/0- 15/0 مول بر ساعت است. دمای عملیاتی 7000c در حضور بخار میباشد. با توجه به اثر مؤثر سطح داخلی بخار با بعضی از ترکیبات واکنش مخصوصاً آنهایی که وزن مولکول بالا دارند واکنش داده و موجب تولید مونواکسیدکربن و هیدروژن میشود.
بخار همچنین موجب احیای تجهیزات اندازهگیری شده و ما را قادر میسازد تا به صورت پیوسته از دستگاههای مورد نیاز بدون احتیاج به سوزاندن کربن استفاده نمائیم.
نحوه تشکیل کک در راکتورهای u شکل با قبلاً توضیح داده شد. ترکیب درصد مواد در این راکتور به قرار زیر است. 0.18% C, 0.7%Mn, 904% Ni, 12.5% Cr.
اثر تیوفن به تشکیل کک در پیرولیز Reformer Raffinate گرفته شده از واحد کاتالیتیکدیفرمرنفتا بعد از استخراج آروماتیکها مورد بررسی قرار گرفته است. ترکیب درصد این پسماند چنین است. آلکانهای بدون شاخه %18.8 آلکانهای شاخهدار 4/60% سیکلوآلکانها 3/10% آروماتیکها 8/18% و باقی مانده محصولات 5/4% و جریان مولی در کل آزمایش 3/0 mol/h است.
پیرولیز بدون حضور بخار و در دمای 820 درجه سانتیگراد و فشار KPAS100 انجام میشد مقدار کک تشکیل شده به وسیله وزن کردن راکتور قبل و بعد از واکنش اندازه گرفته میشود. برای بدست آوردن نتایج صحیح آمادهسازی راکتور قبل از هر آزمایش مهم است. سوزاندن کک قبل از هر آزمایش به وسیله هوا و تجزیه اکسیدهای فلزی با واکنش دادن با محلول اسیدی (3% HCL و 3% H2SO4) ضرروی است.
حجم معادل (VR) راکتور از پروفایل دمایی غیر ایزوترمال راکتور با توجه به Watson,Houger بدست میآید. زمان اقامت همانگونه که در قبل توضیح داده شد محاسبه میشود.
ترکیب درصد محصولات گازی و مایع به وسیله گاز کروماتوگرافی اندازه گرفته میشود.
نتایج:
1- سرعت تجزیه حرارتی:
هپتان محتوی 5/0، 1/0 و 1% جرمی تیوفن در دمای 700 درجه سانتیگراد سازمان اقامت 125/0-02/0 تجزیه میشود. ریت ثابت واکنش با در نظر گرفتن واکنش درجه اول برگشتناپذیر در یک راکتور لوله ای بدست میآید.
وابستگی تبدیل هپتان به زمان اقامت برای مقادیر مختلف تیوفن در شکل 1 نشان داده شده است.
دسته بندی | کشاورزی و زراعت |
بازدید ها | 0 |
فرمت فایل | doc |
حجم فایل | 120 کیلو بایت |
تعداد صفحات فایل | 35 |
مقاله اثرات تنش خشکی در مراحل انتهای رشد ارقام بهاره کلزا در 35 صفحه ورد قابل ویرایش
مقدمه:
این روزها جمله «وابستگی 90 درصدی روغن، ورشکستگی ملی» به واژه ای تکراری تبدیل شده و در هر محفل و نشریه ای این کلمات به کرات بیان میشود. این جمله زمانی حیرت انگیزتر میشود که در کنار بحث خودکفائی گندم نیز قرار بگیرد. ایرانی که تا چند سال پیش بزرگ ترین وارد کننده گندم جهان بود طی چند سال، تنها چند سال، به خودکفائی رسیده و حتی زمزمه های صادرات نیز به گوش می رسد. مسئولان جهاد کشاورزی طی همین سالها با توجه به این موفقیت به فکر برنامه ریزی برای تأمین نیازهای کشور به دانه های روغنی از داخل افتاده اند تا شاید روزی هم بتوان از این سرشکستگی ملی رهایی یافت. این مدیران امیدوارند اجرای طرح ده ساله دانههای روغنی نیز مثل گندم باعث افتخار و مباحاتشان شود (ماهنامه روغن نباتی، 1383 الف). کشور ایران معادل 000، 800 ، 164 هکتار مساحت دارد که از این مقدار، 15 الی 18 میلیون هکتار شورهزار، 20 الی 22 میلیون هکتار بیابان و تقریباً یک میلیون هکتار نیمه خشک است. ایران با متوسط نزولات آسمانی 240 میلی متر که از یک سوم میزان نزولات سالانه جهانی (700 میلی متر) کمتر می باشد، دارای اقلیم خشک و نیمه خشک است. در مناطق خشک، میزان باران سالانه، کمتر از تبخیر و تعرق بوده و بروز دوره خشکی در طول سال امری عادی است (کافی و همکاران، 1379 ب). تحقیقات انجام شده نشان داده است که متوسط افت عملکرد سالیانه به واسطة خشکی در جهان 17 درصد بوده که تا بیش از 70 درصد در هر سال میتواند افزایش یابد(Edmeades et al, 1994). با توجه به این موضوع کشاورزان و دست اندرکاران کشور، اصولاً باید با تلاش فراوان و مدیریت صحیح و اقتصادی منابع آبی و استفاده بهینه از آب در تولید هر چه بیشتر محصولات زراعی، مشکل غذایی جمعیت را رفع سازند. دانه های روغنی پس از غلات، دومین ذخایر غذایی جهان را تشکیل می دهند. این محصولات علاوه بر دارا بودن ذخایر غنی اسیدهای چرب، حاوی پروتئین نیز می باشند (شیرانی راد و دهشیری، 1381). دانه های روغنی به دلیل تولید روغن های با کیفیت بالا و درصد زیادی از اسیدهای چرب و مرغوب از اهمیت شایانی در تغذیه انسان برخوردارند (آلیاری و همکاران، 1379). در حال حاضر، مصرف سرانة روغن خوراکی کشور بیش از 16 کیلوگرم برآورد شده است. لذا با توجه به جمعیت کشور، نیاز به حدود یک میلیون تن روغن در سال میباشد که بیش از 90 درصد آن از طریق واردات تأمین میشود (شیرانی راد و دهشیری، 1381). میزان واردات روغن خام در سال 1382 در جدول (1-1) درج گردیده است
(ماهنامه روغن نباتی، 1383 ب). به این لحاظ، لزوم برنامه ریزی بلندمدت و منسجم با هدف نیل به خودکفائی در تولید روغن خوراکی غیرقابل انکار خواهد بود (شیرانی راد و دهشیری، 1381).
تاریخچه:
کلزای روغنی مهمترین گونه زراعی جنس براسیکا میباشد و به احتمال قوی فرم وحشی آن به اروپا و آفریقای شمالی محدود میشود (شیرانی راد و دهشیری، 1381). موردتوجه قرار گرفتن کلزا تنها در سالهای اخیر نبوده بلکه 2000 سال قبل از میلاد مسیح در نوشته های دوران قدیم از آن یاد شده است. در نوشته های باستانی که به زبان سانسکریت بوده دانه روغنی کلزا، سارسون[1] نامیده شده است (عاشوری، 1380). در آثار به جا مانده از دوران نوسنگی در مصر، در نوشته های هندوها که از سالهای 1500 تا 2000 قبل از میلاد به دست آمده و به ویژه در کتیبه های یونانی، رومی و چینی باقی مانده از سالهای 200 تا 500 قبل از میلاد به گیاهان روغنی جنس براسیکا و ارزش دارویی آنها اشاره شده است. کشت تجاری کلزا از سال 1942 در قسمت شمالی آمریکا یعنی کشور کانادا شروع گردیده و امکان استفاده از روغن کلزا برای مصرف خوراکی در سال 1948 مورد توجه قرار گرفت و منجر به استخراج روغن خوراکی از کلزا در سال های 1956 تا 1957 گردید (شیرانی راد و دهشیری، 1381). کلزا نخستین بار در کانادا در سال 1943 به منظور روغن کاری ماشین بخار کشت شد (عزیزی و همکاران، 1378). در سال 1957 در کشور کانادا اولین کلزای روغنی با مقدار اندک اسید اروسیک اصلاح شد. با تولید روزافزون کلزا طی سال 1956 هزاران هکتار از اراضی کانادا به کشت این گیاه اختصاص یافت (رودی و همکاران، 1382). اپلیکویست (1972) اظهار داشته است که B.napus اولین بار در هلند و در قرن 17 به عنوان یک گیاه روغنی کشف شده است و سپس کشت آن به سایر بخشهای اروپا گسترده شده است. با کشف ویژگیهای غذایی مفید روغن کلزا وضعیت آن در سالهای اخیر بهبود یافته است (عزیزی و همکاران، 1378). در سال 1974، رقم تاور[2] به عنوان اولین رقم دو صفر کلزا که هم میزان اسید اروسیک و هم میزان گلوکوزینولات آن پائین بود، معرفی شد. در سال 1981، تولید رقم های کلزا با میزان گلوکوزینولات بالا تقریباً متوقف گردید (شیرانی راد و دهشیری، 1381). در دو دهه گذشته، آزمایشهای به نژادی و به زراعی متعدد و متنوعی در بخش تحقیقات دانه های روغنی موسسه تحقیقات اصلاح و تهیه نهال و بذر بر روی گیاه کلزا صورت گرفته و منجر به معرفی چهار رقم کلزای اصلاح شده با نام های زرگل، طلایه، استقلال و ساری گل شده است.
(شیرانی راد و دهشیری، 1381). در حال حاضر به واسطة مشکلاتی که در روش کشت متوالی گندم وجود دارد، نظر متخصصان محلی بر این است که باید در تناوب گندم از کلزا استفاده گردد (شهیدی و فروزان، 1375).
1-1- کلیاتی دربارة کلزا:
کلزا با نام علمی Brassica napus با کمتر از 2% اسید اروسیک در روغن و کمتر از 30 میکرومول گلوکوزیتولات در هر گرم وزن خشک کنجاله، نوع خاصی از کلزای روغنی میباشد که به کانولا معروف است. این دو خصوصیت دانه، روغن کلزا را برای تغذیه انسان و کنجاله را به عنوان منبع پروتئین بالا برای تغذیه دام مناسب کرده است (رودی و همکاران، 1382). B.napus کلزای معمولی است که عموماً در اروپا و کانادا کشت میشود و در کانادا به کلزای آرژانتینی معروف است، زیرا برای اولین بار از آنجا به کانادا وارد شده است (عزیزی و همکاران، 1378). کلزا دارای ارقام بهاره و پائیزه با عدد کروموزومی برابر 38 بوده و مهمترین گونه زراعی جنس براسیکا محسوب میشود. ارقام بهاره و زمستانه این گونه به عنوان منبع روغن گیاهی کشت می گردند، ولی ارقام زمستانه آن در شرایط آب و هوایی معتدل، خنک و رطوبتی حداکثر عملکرد دانه را تولید میکند (شیرانی راد و دهشیری، 1381؛ آلیاری و همکاران، 1379).
گیاهان جنس براسیکا بر حسب میزان اسید اروسیک (اسید چربی که برای انسان و دام مضر است) به دو گروه عمده تقسیم میشوند. دسته اول که با علامت اختصاری HEAR[3] مشخص می گردند، روغن آنها دارای بیش از 5 درصد اسید اروسیک بوده و در صنعت لاستیک و پلاستیک سازی، صنایع شیمیائی، صنایع رنگ ، صابون سازی و همچنین به عنوان روان کننده در دستگاههای صنعتی و موتور جت ( به دلیل تحمل حرارت بالا) کاربرد دارند و مصرف خوراکی ندارند.دسته دوم که با علامت اختصاری LEAR[4] نام گذاری میشوند، روغن آنها با کمتر از 5 درصد اسید اروسیک، مصرف خوراکی دارند (شیرانی رادو دهشیری، 1381). اصطلاح کانولا به بذر یا فرآوردههای بذری اطلاق می شود که حاوی کمتراز 2% اسید اروسیک در روغن خود و حاوی کمتر از 30 میکرومول بر گرم گلوکوزینولاتهای آلیفاتیک در کنجاله خود باشند ( عزیزی و همکاران، 1378). روغن کانولا یکی از مناسب ترین روغنهای خوراکی برای تأمین سلامتی انسان میباشد. پائین بودن میزان کلسترول این نوع روغن به دلیل پائین بودن درصد اسیدهای چرب اشباع شده درترکیب آن مزیت فوقالعاده ای برای این روغن نسبت به سایر روغنهای نباتی محسوب میشود. تحقیقات نشان میدهد روغن کلزا، کلسترول خون را در افراد معمولی و افرادی که کلسترول خون آنها بالاست، کاهش میدهد. انجمن قلب آمریکا کاهش چربی های اشباع را در غذا توصیه نموده است، زیرا یک ارتباط مستقیم میان چربیهای اشباع و بیماری کرونر قلب وجود دارد. بنابراین توصیه جایگزین نمودن روغن کلزا با چربیهای اشباع شده برای کاهش سطح کلسترول خون و احتمال بیماری کرونر قلب در عموم مردم صرفه جویی قابل توجهی در هزینه حفظ سلامت بهداشت عموم خواهد گذاشت (عاشوری ،1380). تکامل اصلاح کلزا از کلزای سنتی تا ارقام اصلاح شده به صورت زیر میباشد:
- کلزاهای سنتی (HEAR) هنوز هم تولید شده و حاوی 22 تا 60 درصد اسید اروسیک در روغن و 100 تا 205 میکرومول گلوکوزینولات در هر گرم کنجاله میباشد.
- ارقام یک صفر (LEAR) معمولاً واریتههای کانادایی بوده و حاوی کمتر از 5 درصد اسید اروسیک در روغن و 100 تا 205 میکرومول گلوگوزینولات در هر گرم کنجاله میباشد.
- ارقام دو صفر: نوع تکامل یافته ارقام یک صفر بوده و حاوی کمتر از 2 درصد اسید اروسیک در روغن و 18 تا 30 میکرومول گلوکوزینولات در هر گرم کنجاله میباشد.
- ارقام سه صفر : نوع اصلاح شده ارقام شلغم روغنی بوده و اصطلاحاً به آنها candle می گویند که دارای حداقل میزان اسید اروسیک، گلوکوزینولات و فیبر میباشند.
1-6- خصوصیات گیاه شناسی
کلزا با نام علمی Brassica napus L. گیاهی است از خانواده چلیپائیان[5] و یکساله با عدد کروموزومی (38=n2) که عمدتاً دارای تیپهای رشد بهاره ، پائیزه و بینابین می باشد. به طور کلی ویژگیهای اندامهای رویشی و زایشی آن به شرح زیر است:
1-6-1- ریشه
دارای یک ریشه اصلی عمودی و غالباً بلند و به شکل دوک میباشد که قطر قسمت فوقانی آن به 1 تا 3 سانتی متر می رسد و تا عمق 80 سانتی متری خاک نفود میکند (شیرانی راد و دهشیری،1381). در شرایط آب و هوایی و زمین مناسب ریشه های جانبی رشد کرده و به شدت منشعب میشوند(حجازی،1379). این ریشه ها حجم عظیمی از خاک را در برگرفته و جذب رطوبت و مواد غذایی را برعهده دارند ( آلیاری و همکاران،1379). ریشه های این گیاه تا عمق 120 و.150 سانتی متری در زمین فرو می روند. البته نفوذ ریشه در زمین محدود است( حجازی، 1379). در خاکهای سنگین رسی، عمق نفوذ ریشه کاملاًمحدود میشود. عمق نفوذ ریشه و کشیدگی سیستم ریشه، نقش به سزایی در تحمل خشکی و استفاده بهینه از رطوبت ذخیره شده در خاک دارد. همچنین گیاه را در ارتفاع زیاد با کشت متراکم در مقابل بادهای شدید حفظ می کند (شیرانی راد و دهشیری، 1381). تحقیقات نشان داده اند که سیستم ریشه ای کلزا اثرات مفیدی روی ساختمان خاک و نفوذ رطوبت دارند و نتیجه اش عملکرد دانه و پروتئین بالاتر در غلاتی است که در تناوب با آن قرار می گیرند (Norton et al ,1999).
1-6-2- ساقه
کلزا یک ساقه اصلی تولید می کند که از آن شاخه های زیادی منشعب می شوند (شیرانی راد و دهشیری،1381). ساقه ها معمولاًگرد، توپر،راست و سبز هستند که با افزایش سن گیاه به زردی گرایش مییابند. در بیشتر مناطق، ارتفاع ساقه بین 80 تا 150 سانتی متر است، اما در استرالیا ارتفاع ساقه به 250 سانتی متر می رسد که باعث بروز مشکلاتی در امر برداشت می شود. بنابراین واریتههای پاکوتاه به سرعت رواج پیدا کرده اند (عاشوری،1380). ساقه در مرحله روزت[6] ، به شکل کوتاه با میانگره های فشرده ( با فاصله ای حدود 5/1-1 سانتی متر از همدیگر) دیده می شود. (آلیاری و همکاران، 1379). پس از پایان مرحله روزت، ابتدا ساقه اصلی طویل می شود و پس از به گل نشستن ساقه اصلی، شاخه های فرعی نیز شروع به طویل شدن میکنند. میزان شاخه فرعی آن به واریته، محیط، تغذیه گیاه و تکنیک های زراعی بستگی دارد. (شیرانی راد و دهشیری، 1381). رنگ ساقه تا مرحله گل ،سبز بوده و به تدریج تا رسیدگی فیزیولوژیک[7] به رنگ کاهی در می آید ( آلیاری و همکاران،1379).
1-6-3- برگ
برگ های کلزا به سه فرم چسبیده ساقه آغوش، چسبیده معمولی و دارای دمبرگ میباشند. برگهای کلزا به صورت متناوب بر روی ساقه قرار میگیرند(شیرانی راد و دهشیری،1381). آرایش برگهای مزبور متناوب بوده و شکل عمومی آنها بیضوی کشیده با کرکهای متعدد می باشد. تعداد آن ها بر روی ساقه اصلی در تیپهای بهاره در حدود 12 عدد و در تیپهای پائیزه بیش از 40 عدد میباشد ( آلیاری و همکاران،1379). برگها در زمان رسیدگی محصول شروع به زردی نموده و از قسمت پائین به سمت بالای بوته خشک شده و ریزش مینماید که این امر باعث سهولت در برداشت می گردد( عاشوری،1380).
1-6-4- گل
گل به صورت صلیبی بوده و آرایش آنها به شکل خوشه ای بلند می باشد. تعداد گل ها میتواند تحت تاثیر بسیاری از عوامل مانند واریته، آب و هوا وتکنیک های زراعی قرار گیرد (عاشوری،1380). یک بوته کلزا در شرایط ایده آل و در تراکم کم، حدود 4000 جوانه حل تولید می کند که از این تعداد باتوجه به ژنوتیپ، شرایط محیطی و تراکم 5 الی 20 درصد به گل تبدیل شده و بقیه ریزش[8] خواهند کرد (آلیاری و همکاران،1379). هرگل متشکل از 4 کاسبرگ، 4 گلبرگ، 6 پرچم (2 پرچم کوتاه تر از بقیه) و یک مادگی دوبرچهای است ورنگ گلبرگها نیز از پرتقالی تا زرد کم رنگ متغیر است. گلدهی کامل گیاه 3 تا 5 هفته به طول میانجامد(حجازی،1379). کلزا گیاهی است خودگشن[9] و میزان خودباوری در آن به طور معمول بیش از 70 درصد است. وجود درصدی از دگرگشنی[10] (30-20 درصد)، زمینه کاربرد حشرات را در کلزا توجیه میکند (آلیاری و همکاران، 1379).
1-6-5- میوه
میوه کلزا، خورجینی[11] به طول 5 تا 10 سانتی متر است که فاقد کرک بوده و در انتها به یک منقار منتهی می شود. هر خورجین دارای 2 برچه می باشد. برچه ها به وسیله دیواره کاذبی[12] ( غشای میانی) از هم جدا میگردند. دانه ها در دو طرف غشای میانی قرار دارند. این دیواره هنگام رسیدن میوه پاره میشود. در هر خورجین ممکن است 15 تا 40 عدد دانه تشکیل گردد( شیرانی و دهشیری، 1381).
1-6-6- دانه کلزا
هر بوته کلزا صدها دانه کوچک، کروی و قهوه ای روشن مایل به سیاه و زرد رنگ تولید میکند (Buzza,1991) . بذور زرد رنگ دارای روغن بیشتری نسبت به بذور قهوهای تیره و یا بذور سیاه می باشند. وزن هزار دانه نسبت به نوع رقم، محل تولید ، شرایط محیطی و جایگاه میوه در روی بوته و نیز مکان بذر در میوه، متفاوت بوده و بین 3 تا 7 گرم متغیر خواهد بود (آلیاری و همکاران،1379). ضخامت بذر در حدود 1 تا 2 میلی متر میباشد وهر کیلوگرم دانه از 000/250 الی 000/300 دانه تشکیل شده است (Buzza,1991).
1-7- مراحل فنولوژی
برای تشریح مراحل رشد و نمو کلزا می توان از روش کد گذاری استفاده کرد. این عمل توسط دانشمندانی همچون هارپر و برکن کمپ (HB)[13] وسیلوستر برادلی (SB)[14] صورت گرفته است (شیرانی راد و دهشیری،1381). براساس آخرین روش کدگذاری که توسط انجمن کلزای کانادا[15] در سال 1998 انجام شده، مراحل رشد و نمو به صورت زیر تقسیم بندی می شود (جدول1-7):
دسته بندی | داروسازی |
بازدید ها | 1 |
فرمت فایل | doc |
حجم فایل | 3556 کیلو بایت |
تعداد صفحات فایل | 105 |
گزارش کامل آزمایشگاه کنترل کیفیت شرکت داروسازی آریا در 105 صفحه ورد قابل ویرایش
فهرست
عنوان صفحه
مقدمه................................................................................................................ 1
تاریخچه ........................................................................................................... 3
داروهای تولید شده در شرکت داروسازی آریا ............................................. 6
بخش اول ......................................................................................................... 7
اداره تحقیقات انالیتیک و کنترل کیفیت ............................................................. 8
وسایل آزمایشگاه کنترل .................................................................................. 11
روش کار با دستگاه KF کارل فیشر................................................................ 16
طراحی و فرمولاسیون یک قرص..................................................................... 17
مطالعات قبل از فرمولاسیون ........................................................................... 19
مراحل اصولی طراحی یک قرص ..................................................................... 19
خواص مورد نظر در مورد یک داروی جدید................................................... 20
اصول اساسی تولید قرص................................................................................ 21
ویژگی های قرص............................................................................................. 23
اختصاصات فیزیکی قرص................................................................................ 24
عواملی که در سرعت انحلال داروها دخالت دارند.......................................... 37
اداره تولید......................................................................................................... 40
بخش دوم ........................................................................................................ 47
آزمایش تعیین مقدار ایبوپروفن 400 میلی گرم............................................... 49
آزمایش تعیین مقدار استامینوفن 325 میلی گرم............................................. 54
آزمایش حلالیت استامینوفن 325 میلی گرم..................................................... 57
تعیین مقدار رطوبت استامینوفن 325 میلی گرم............................................... 60
آزمایش حلالیت سیمواستاتین 20 میلی گرم ................................................... 62
آزمایش تعیین مقدار املودیپین 50 میلی گرم .................................................. 65
آزمایش حلالیت ایندومتاسین 75 میلی گرم...................................................... 69
آزمایش تعیین مقدار رانیتیدین 150 میلی گرم................................................. 74
آزمایش تعیین مقدار بیسموت 120 میلی گرم.................................................. 77
آزمایش تعیین مقدار استامینوفن کدئین 20/300 میلی گرم............................. 81
روش نمونه برداری و آنالیز ماده اولیه متیلن کلراید....................................... 86
بخش سوم ....................................................................................................... 95
ایندومتاسین ..................................................................................................... 96
رانیتیدین HCL ................................................................................................. 100
استامنیوفن........................................................................................................ 103
مقدمه
در مورد بخش کنترل و تضمین کیفیت باید متذکر شد که در این برهه از تاریخ داروسازی تاکید خاصی به این بحث شده است.
نتیجتا وظایف و مسئولیتهای داروسازان شاغل در این قسمت از صنعت مشکل و سنگین می شود. آنها می بایست با تلاش خستگی ناپذیر خود عملیات ساخت فرآورده های دارویی را در کلیه جنبه ها به حالت بی عیب سوق دهند. برای رسیدن خط تولید به حالت بی عیب داروسازان و دیگر متخصصین بخش کنترل و تضمین کیفیت تلاش خود را صرف امور ذیل می نمایند:
- شناسایی مسائل و مشکلات مهم و بالقوه خط تولید قبل از وقوع
- حساس نمودن و تکمیل روشهای کنترل محصول روشهایی که جهت تعیین مطابقت محصول نهایی با کلیه الزامات فارماکوپه و GMP توانا باشند.
در برخی از شرکتهای داروسازی وظایف و عملیات کنترل کیفیت و تضمین کیفیت مجزا از یکدیگر می باشد. اما به هر صورت مجزا یا با هم عمده مسئولیتهای آنها به این قرار می باشد:
1- بازرسی آنالیز و تایید مواد اولیه مواد در حین تولید و محصولات نیمه ساخته و نهایی اعم از اینکه این محصولات برای آزمایشهای بیولوژیکی و بالینی و یا برای فروش به داروخانه باشند.شمیستهای کنترل کیفیت اغلب از روشهایی استفاده میکنند که بوسیله بخش تحقیقات آنالیتیک ارائه و توسعه یافته است. در صورت لزوم شیمیستهای کنترل کیفیت روشهای مذکور را جهت تسریع در کارهای روزمره و تکراری خود مناسب می کنند.
2- آزمایش محصولات غیر استریل ازجهت عاری بودن آنها از آلودگی به میکروبهای بیماری زا و آزمایش محصولات استریل از جهت تضمین استریلیتی آنها.
3- آزمایش و تایید بسته بندی محصولات دراین زمینه باید متذکر شد که کنترل و تضمین کیفیت با حضور مستمر خودآگاهیها و هشدارهای لازم به پرسنل بسته بندی می دهد. این هشدارها به منظور جلوگیری ازمخلوط شدن برچسبها مخلوط شدن محصولات اشتباه شدن شماره بر چسب محصولات و احتمالاً اشتباه در تاریخ انقضای آنها انجام می گیرد.
4- ازجمله وظایف دیگر کنترل و تضمین کیفیت و توسعه روشهای کنترل جهت تضمین ومطابقت روند تولید باعملیات تولیدی خوب GMP می باشد. در داروسازی جدید وظیفه دیگری بعهده این بخش می باشد و آن تضمین مطابقت مطالعات بیولوژیکی و آزمونهای بالینی با عملیات آزمایشگاهی خوب GLP و عملیات بالینی خوب GCP می باشد.
برای مثال این عملیات توسط بخش کنترل و تضمین کیفیت بررسی شده و مطابقت آنها با GCP, GMP, GLP تایید می شود.
جزئیات این نظارتها عبارتند از: نگهداری مناسب مواد اولیه، چگونگی سنتز داروها، تهیه نمونه برای آزمایشگاههای بیولوژیکی، آزمونهای بالینی، نگهداری حیوانات آزمایشگاهی و بایگانی نتایج تحقیقی حاصل از آزمایشهای بالینی و بیولوژیکی در کلیه آزمایشگاهها نظارت بر ساخت محصول نهایی نظارت دقیق بر موجودی انبار و بسیاری از عملیات دیگر با توجه به بسط و گسترش روز افزون وظایف بخش تحقیقات انالیتیک و کنترل و تضمین کیفیت مسئولیتهای مضاعفی متوجه پرسنل شاغل دراین قسمت شده است. اما درعوض سبب پیدایش فرصتهای شغلی جدیدی درصنعت داروسازی شده است.
تاریخچه شرکت داروسازی آریا
شرکت داروسازی آریا در سال 1956 با نام آزمایشگاه گرامی به صورت کارخانه کوچکی تاسیس یافت. درسال 1981این کارخانه توسط گروهی از داروسازان گسترش یافته و بخشهای مختلف آن مدرنیزه شد. درسالهای بعد تعداد سهامداران افزایش پیدا کرد و به بیشتر از 120 داروساز با تخصصهای مختلف رسید. برای بوجود آوردن موقعیت فعلی کارخانه زمینی با مساحت 7000 متر مکعب خریداری شد. که موقعیت ساختمانهای صنعتی آن 5000 متر مکعب می باشد که درسال 1985 با همکاری کارشناسان داروساز سهامدار بوجود آمد. سپس نام فعلی کارخانه به کارخانه داروسازی آریا تغییر یافت.
برنامه ده سال اخیر شرکت داروسازی آریا توسعه فضاهای خالی استفاده از دستگاهها و نیروهای کارآمد و تلاش برای بدست آوردن ماشین های جدید در آینده نزدیک است.
امروزه شرکت داروسازی آریا به دستگاههای مدرن با ظرفیت بالای تولید مجهز شده است و نیروهای کارآمدی در خط تولید وجود دارند که از همکاری این دو با هم می توان 30 نوع مختلف قرص در دوزهای مختلف تهیه کرد. و کپسولهای تولید شده درطی یک سال بیش از 1200000000 واحد است.
توسعه ماشینهای قدیمی درتولید داروهای سنتز شده یک مرحله دیگر از برنامه کارخانه می باشد.
تحویل تولیداتی با کیفیت بالا بر طبق خواسته کارفرما و مشتری از کارهای شرکت داروسازی آریا می باشد. و دراین راه آزمایشگاه کنترل کیفیت را توسعه داده اند و مجهز به دستگاه های مدرن با قدرت آنالیز بالا کردند.
دراین شرکت کارکنان کاملاً تسلیم راهنماییها و تجارب صاحب کارخانه در تولید و بسته بندی و نگهداری از اطلاعات تولید داروها هستند. و مایل به انجام درست و کامل کارهای آزمایشگاهی و عمل کردن بر طبق استانداردهای داروسازی هستند. شرکت داروسازی آریا دارای گروههای مختلفی از متخصصان و افرادی هستند که درقسمتهای مختلف مهارت دارند که آنها هسته مرکزی شرکتند و به کمک تجارب آنها جریان تولید کنترل می شود وشرکت دارای قسمت توسعه و تحقیقات (R&D) است و نیز اثرات بالینی تولیدات مطالعه می گردد. و این تیمها تحقیقات دربازار دارو را انجام داده و به محصولات کارخانه محصولات جدیدی درخط تولید اضافه می کنند. مدیریت شرکت براین معتقد است که سختگیری های صورت گرفته در مورد تعهد به استانداردها و انتخاب مواد اولیه سالم برای بوجود آمدن کیفیت بالا و سلامتی مردم در آینده است.
این شرکت دارای قسمتهای مختلفی ازجمله مدیریت، حسابداری، امور اداری و بازرگانی، مسئول برنامه ریز ی، مسئول فنی، رختشوخانه، مسئول انبار، آزمایشگاه کنترل، کنترل حین تولید، سنتز، فرمولاسیون،مدیریت تولید، سرپرست تولید، بسته بندی، پوشش، تاسیسات، مدیریت فنی انبار، بسته بندی و مواد اولیه است. که آزمایشهای انجام شده توسط شیمیست در مورد مواد اولیه و کیفیت دارو در آزمایشگاه کنترل صورت می گیرد.
-دسیکاتور
دسیکاتور یک ظرف شیشه ای سرپوشیده است که برای نگهداری مواد از اتمسفر خشک به کار می رود. معمولاً با یک عامل خشک کننده مثل کلسیم کلرید بی آب یا سیلیکاژل یا کلسیم سولفات بدون آب پر می شود.
9-اسپکتر و فوتومتر با لامپ UV
اگر یک ترکیب شیمیایی در معرض تابش امواج الکترومغناطیس قرار گیرد در این صورت می تواند با آن تاثیر متقابل داشته باشد. حال اگر انرژی تابشی رد شده از جسم را برحسب فرکانس عدد موجی یا طول موج رسم کنیم یک طیف جذبی به دست می آید. ثبت طیفهای جذبی در دستگاههایی انجام می گیرد که اجزای اصلی آن شامل یک منبع تابش طیف پیوسته یک ظرف اندازه گیری نمونه آزمایش یک ظرف مقایسه ای یک شبکه یا منشور و یک گیرنده (ثبات)
جذب مولکولی درناحیه ماورا بنفش و مرئی بستگی به ساختمان الکترونی ودر ظرفهای مخصوص به حجم می رسانید و می توان ازاین نمونه نمونه های دیگر را با غلظت مورد نظر با رقیق کردن آن تهیه نمود. تمیز بودن سل فوق العاده مهم است. سل را باید چندین بار با محلول شستشو داده و بعد جذب نمونه را توسط دستگاه بدست آورد.
10-دستگاه Dissolution
درکار با این دستگاه هدف محاسبه درصد محلولیت نمونه می باشد. 6 مخزن به حجم 900 سی سی درمحفظه ای که با آب احاطه شده و دمای آن قابل تنظیم است قرار دارد. اساس کار دستگاه را تشکیل می دهد.
درون مخزن ها محورهایی قرار دارند که در قسمت تحتانی آنها سرهای محتوی قرص قرار میگیرد و با گردش درون مخزن حاوی حلال موجبات انحلال قرص را فراهم می کنند. بعد جذب نمونه ها را خوانده و از روی جذب استاندارد غلظت نمونه حاصل از انحلالیت قرص را بدست می آوریم.
11-دستگاه KF کارل فیشر
اساس کار با این دستگاه به این صورت است که وقتی نمونه محتوی آب بامصرف کارل فیشر تیتر می شود الکترودهی پلاتین پلاریزه می شوند و مازاد آن به میزان خیلی جزئی الکترودها را پلاریزه می کند و به دنبال آن یک افزایش زیادی در جریان خواهیم داشت که از آمپرتر می گذرد . آمپر متر زمانی که کار می کند جریانی بیش از 400 آمپر از آن می گذرد.
12-دستگاه HPLC
13-دستگاه GC
روش کار با دستگاه KF کارل فیشر(دستگاه تعیین رطوبت نمونه)
1- کلیه ظروف و وسایل مورد استفاده بایستی قبل از مصرف بخوبی شسته شده و در آون کاملاً خشک شده باشند.
2- دستگاه را روشن می کنیم.
3- مقدار 40 میلی لیتر حلال تازه (متانول خشک) به ظرف مخصوص تیتراسیون دستگاه منتقل می کنیم و یک مگنت داخل آن قرار می دهیم.
4- کلید RUN را فشار می دهیم تا دستگاه تیتراسیون اولیه را انجام دهد.
5- پس ازاتمام تیتراسیون اولیه (زمانیکه چراغ Ready روشن شد) دکمه Run را فشار می دهیم، چراغ (Weight) روشن می شود.
6- وزن نمونه توزین شده داخل ظرف مخصوص توزین را وارد می کنیم و کلید Run را می زنیم.
7- زمان لازم برای پخش یاحل شدن نمونه را به دستگاه می دهیم (120 ثانیه) و کلید Run را فشار می دهیم.
8- از دریچه مربوطه نمونه را داخل دستگاه می ریزیم ، به نحوی که روی دیواره و الکترودها نریزد، سپس کلید Run را فشار می دهیم. دستگاه شروع به کار میکند وپس از اتمام تیتراسیون بوق دستگاه به صدا در می آید و مقدار رطوبت نمونه روی صفحه نمایشگر ظاهر می شود. در این هنگام چراغ Ready روشن است و دستگاه آماده پذیرفتن نمونه بعدی می باشد.
به همین ترتیب میتوان چندین نمونه را پشت سرهم در همان حلال موجود در بشر ریخته واندازه گیری نمود، بطوریکه مجموع مقدار آب داخل شده و تییر شده حدود 100 میلی گرم برای 20 میلی لیتر حلال اولیه باشد.
تهیه نمونه های مورد آزمایش:
1- نمونه های مایع را میتوان بوسیله پیپت دقیق بصورت حجمی یا بوسیله سرنگ بصورت وزنی (توزین مضاعف) وارد بشر تیتراسیون کنیم.
2- نمونه های جامد را به سرعت در هاون کاملاً خشک به خوبی نرم می کنیم، سپس مقدار تعیین شده را درون ظروف توزین مخصوص وزن نموده و داخل بشر میریزیم.
3- می توانیم نمونه ها را پشت سر هم در ظروف توزین مخصوص وزن کرده و همه آنها را دریک دسیکاتور یا ظرف دردار مناسب نگه داشته و حمل می کنیم.
طراحی و فرمولاسیون یک قرص
فرمولاسیون اشکال دارویی جامد خوراکی و بخصوص قرص ها در دهه های گذشته باتوجه به پیش تراکم نمودن استفاده از ماشینهای سریع و هم اکنون ماشینهای فوق سریع با سیستمهای کنترل وزن خودکار و همچنین امکان دسترسی به مواد اولیه ای که قابلیت تراکم پذیری مستقیم دارند دچاردگرگونی های وسیعی شده است.
طراحی یک قرص معمولاً شامل یک سری از کارهایی است که باتوجه به فرسایش و سایش قرصها مقاومت مکانیکی درمقابل لب پریدگی و شکنندگی سریع باز شدن و سرعت انحلال آن توسط فرمولاتور انجام می شود. به طور کلی انتخاب صحیح و توازن بین مواد اولیه کناری و اصلی و یاترکیبی از مواد به منظور دسترسی به نتیجه دلخواه (تولید یک داروی سالم موثر و بسیار قابل اعتماد که مورد نظر می باشد) عملاً یک هدف ساده محسوب نمی گردد.
فرمولاسیون و طراحی یک قرص ممکن است به عنوان مرحله ای تلقی گردد که فرمولاتور مطمئن شود که میزان صحیحی از دارو از شکلی صحیح دریک زمان مناسب ودریک سرعت مناسب و فقط با خواص شیمیایی اولیه درمحل مورد نظر تحویل گردد.
میزان یامقداری از دارو که بتواند اثرات درمانی مورد نظر را بوجود آورد وابسته به عوامل زیادی می باشد. درمورد داروهای رسمی میزان مقدار خوراک این داروها قبلاً تعیین گردیده است.
در مورد داروهای خاص مانند گریزئوفولین که جذب بهتر وموثرتر وابسته به اندازه ذرات و سطح مخصوص دارو می باشد بوسیله کاهش اندازه چنین دارویی می توان سطح مقدار خوراک راحتی به نصف یا بیشتر کاهش داد. ولی همان نتایج بیولوژیکی دلخواه رابه دست آورد.
دسته بندی | داروسازی |
بازدید ها | 1 |
فرمت فایل | doc |
حجم فایل | 1626 کیلو بایت |
تعداد صفحات فایل | 92 |
مجموعه گزارش کار آزمایشگاه داروسازی در 92 صفحه ورد قابل ویرایش
روش اندازه گیری مفنامیک اسید در کپسول 250 میلی گرم (تیتریسمتری) تعداد 20 عدد کپسول را خالی کرده و پودر داخل آن را کاملا مخلوط می کنیم تا به طور یکنواخت گردد از این پودر مقدار 0.5 گرم مفنامیک اسید (0.6 گرم) را دقیقا وزن کرده و در 100 میلی لیتر اتانول گرم (که قبلا نسبت به محلول فنول رد خنثی شده باشد) حل کنید.
محلول حاصل را در مقابل اندی کاتور محلول فنول دو با محلول NaoH 0.1 مولار تیتر نمایید هر میلی لیتر از محلول NaoH 0.1 مولار معرفی معادل با 24.13 میلی گرم از مفنامیک اسید میباشد مقدار میلی گرم مفنامیک اسید موجود درهر کپسول از فرمول زیر محاسبه میشود.
میلی گرم مفنامیک اسید موجود هر در کپسول=* 24.13 که درآن تا حجم معرفی از محلول NaoH 0.1 مولار برحسب میلی لیتر میباشد Limits:(237.5 to 262.5)
Ref: B.P ((1996), p:1793
شماره پنج 0.09
وزن پودر و کاغذ صافی 0.4022 gr
وزن کاغذ صافی - 0.0014 gr
وزن واقعی پودر
در 100 cc الکل 2 الی 3 قطره اندی کاتور می ریزیم رنگ از رنگ زرد به قرمز پوست پیازی تبدیل میشود سه قطره سود NaoH 0.1 مولار ریختیم رنگش دوباره زرد شد که این کار به معنی خنثی شدن است سپس با ریختن 0.6 گرم پودر مفنامیک اسید داخل الکل بعد از مگنت استفاده کردیم که پودر کاملا در الکل حل شود و 20 دقیقه برای حل شدن به آن زمان می دهیم.
فنل زرد: Hand book of chewistry and Physics (CRC)
رنگ از زرد به قرمز پوست پیازی
فرمول مفنامیک اسید 105% تا 95 C15H15NO2
دلیل استفاده از اندی کاتور: تغییر رنگ در یک PH خاص تغییر رنگ از حالتی به حالتی دیگر
چه از سود استفاده می کنیم که چون واکنش اسید و باز برای خنثی کردن همدیگر
عمل تتراسیون:
در بورت NOH-1 0.1 مولار در ارلن الکل + پودر+ فنل دو:
20.9= V مصرفی ازبورت
فرمول گسترده: عدد جرمی 241.29
انواع اسم های تحاری: ponstan و ponstel
حلالیت کم در آب در الکل حلالیت زیادی دارد.
در هیدروکسیدهای قلیایی حلال است نوشته شده از کتاب MERCK INDEX
بدست آوردن عدد 24.13 یا 24.129
Disnlotion انحلال:
زمان انحلال:
در محلول با حجم معین زمان مشخص غلظت خاصی را در دور مشخص (همزن) کپسول شروع به حل شدن میکند و غلظت را اندازه می گیریم بر حسب درصد
زمان باز شدن Disantegration آب روی صفحه 39 ، 750cc آب مقطر می ریزیم.
آزمایش بعد:
می خواهیم زمان باز شدن کپسول مفنامیک اسید را در بدن انسان اندازه گیری کنیم.
دستگاه Disantegration دما را به اندازه دمای بدن انسان 38 تنظیم می کنیم تا هنگام باز شدن کپسول ها در آب و عبور آنها از توری بعد از 30 دقیقه از صافی عبور کرده و باز شد
آزمایش قبلی را با بچ 10 انجام می دهیم.
محاسبات:
دستگاه Disantegration:
کپسول های مفنامیک اسید با بچ 10
برای باز شدن کپسول time= 15 min
روش تعیین مقدار لیتیم کربنات در قرص لیتیم کربنات
تعداد 20 عدد قرص را وزن کرده و کاملا پودر کنید از این پودر مقداری معادل با 1 gr لیتیم کربنات دقیقا توزین کنید (1.367 gr) و در 100 میلی لیتر آب مقطر ریخته و به این مقدار 50 میلی لیتر محلول هیدرولیک Hcl اسید 1 مولار US افزوده و به مدت 1 دقیقه min بجوشانید و سپس سردکرده و قمدار اضافی اسید را در مقابل معرف متیل اورانژ با محلول سدیم هیدروکساید 1 مولار (V.S) تیتر کنید هر میلی لیتر از محلول هیدروکلریک اسید Hcl 1 مولار معادل 36.95 میلی گرم از Li2 Co3 میباشد.
مقدار میلی گرم Li2 Co3 در هر قرص از فرمول زیر محاسبه میشود.
که در آن Wa وزن متوسط قرص ها برحسب میلی گرم (410) WS مقدار بر داشتی برحسب میلی گرم (1365)
V حجم مصرفی سدیم هیدروکساید 1 مولار بر حسب ml
به طور ساده
وزن 20 عدد قرص+ کاغذ: 8.1475
وزن کاغذ: 5.2365-
3.9555= 7.9110
دلیل جوشاندن: خارج شدن Co2 موجود در محلول
اول محلول را می گذاریم تا به جوش بیاید بعد از جوش آمدن به مدت 1 دقیقه بجوشد تا Co2 محلول از آن خارج شود. طرز تهیه سدیم هیدروکساید 1 مولار NaoH در ظرفیت 1 نرمالیته با مولاریته برابر هستند.
1نرمال= 1مولار
M:Na=40
40 گرم سود وزن کردیم در lit 1 آب حل کردیم و روی هم زن قرار دادیم تا حل شود. این واکنش گرمازاست اگر آب را به مقدار 1 Lit کم کم به سود بیفزاییم باعث میشود که از گرمای خود سود استفاده شود تا در آب بهتر حل شود.
در بورت اسید Hcl
در ارلن سود N 0.1 نرمال و تیتراسیون را شروع می کنیم بهترین معرف برای تیتراسیون اسید و باز فنل فتالئین است که 2.2 اسید Hcl مصرف شد رنگ سود سفید شد
از این راه نرمالیته سود رابدست آوردیم.
آزمایش مجدد
روش تعیین مقدارلیتیم کربنات در قرص لیتیم کربنات
10 عدد قرص لیتیم کربنات را پودر کردیم و 1.36 gr وزن نمودیم سپس در100 ml آب و 50 cc محلول هیدروکلردریک 1.05Hcl نرمال حل نمودیم و آنرا به مدت 1 min جوشاندیم سپس در ظرف آب یخ قرار دادیم و تا خنک شود بعد با محلول سود NaoH کردیم ضمنا معرف ما متیل اوران= میباشد با مصرف 25.3 cc محلول ما از رنگ صورتی به زرد تبدیل شد.
تمامی اعداد بر واحد mg میلی گرم میباشد.
برای تبدیل از gr به mg در عدد 1000 ضرب می کنیم:
Dissolutio قرص لیتیم کربنات
محیط: 900 میلی لیتر آب مقطر
دور در دقیقه: 100 rpm
زمان: 30 دقیقه
طرز تهیه محلول استاندارد:
تعداد 30 میلی گرم از لیتیم کربنات استاندارد را دقیقا توزین کرده و به بالن ژوژه 100 میلی لیتری منتقل کرده سپس مقدار 20 میلی لیتر آب مقطر و مقدار 0.5 میلی لیتر هیدروکلرییک اسید غلیظ به آن افزوده خوب به خم بزنید تا کاملا حل شود و با آب مقطر به حجم برسانید و مخلوط نمایید.
مقدار 20 میلی لیتر از این محلول را به بالن ژوژه یک لیتری (1000 میلی لیتر) منتقل کنید. به آن تعداد 800 میلی لیتر آب مقطر و مقدار 20 میلی لیتری از محلول surfactant مناسب افزوده با آب مقطر به حجم برسانید و مخلوط کنید.
طرز تهیه محلول آزمایشی:
محلول تحت آزمایش قرص لیتیم کربنات را به بالن ژوژه یک لیتری منتقل کنید و با آب مقطر به حجم برسانید وخوب مخلوط کنید. مقدار 20 میلی لیتر از محلول صاف شده را به بالان ژوژه یک لیتری دیگری منتقل کرده و به آن مقدار 500 میلی لیتر آب مقطر و یک قطره محلول هیدروکلریک اسید غلیظ و مقدار 20 میلی لیتر از محلول sufractant مناسب افزوده و با آب مقطر به حجم برسانید و مخلوط نمایید.
روش کار:
از دستگاه flam photometero مناسب استفاده می کنیم. صفر و ضد دستگاه را تنظیم می کنیم سپس میزان نشر محلول استاندارد و محلول نمونه را در طول موج uvi nm اندازه گیری کنید.
مقدار میلی گرم Li2 Co3 در هر قرص از فرمول زیر محاسبه کنید
100 C (A/S)
که در آن A و S به ترتیب اعداد خوانده شده از دستگاه برای محلول های نمونه و استاندارد می باشند و C غلظت نهایی استاندارد بر حسب میکروگرم بر میلی لیتر میباشد. تلورانس نباید از 80% Li2Co3 تعداد مقدار نوشته شده بر روی اتیکت در مدت 30 دقیقه کمتر باشد. .
اقتباس از: U.S.P.XXIV,P.982(2000)
این قرص برای اختلاف روانی و … مورد استفاده میباشد.
تکرار ازمایش برای بار سوم:
روش تعیین مقدار لیتیم کربنات در قرص لیتیم کربنات:
از پودر قرص های لیتیم کربنات به مقدار 1.362 gr وزن می کنیم وزن کاغذ صافی 0.1477 میباشد پودر قرص را در 100 ml آب مقطر و 50 cc اسید کلریک Hcl تیتر ازول Titeisol حل می کنیم سپس به مدت 1 دقیقه می جوشانیم و در ظرف سرد قرار می دهیم تا سرد شود بعد با سود NaoH 1 نرمال تیتر می کنیم معرف ما متیل اورانژ میباشد. تغییر رنگ از صورتی به زرد تبدیل شد. V=23.2cc حجم مصرفی
روش اندازه گیری اکسی متولون در قرص:
معرف لازم:
1- محلول اتانولی سدیم هیدروکساید (Ethanolic sodium hydroxide 0.01m)(0.0m) (420 میلی گرم از سدیم هیدروکساید را در اتانول 96% حل و با آن به حجم 100 میلی لیتر برسانید)
وسیله های مورد لزوم:
1- هاون چینی 2- ترازوی حساس 3- بالن ژوژه 250 میلی لیتری و 50 میلی لیتری 4-پلی پت ژوژه 5 میلی لیتری 5- دستگاه اسپکتروسکپی uv/vis باسلهای مناسب
روش کار:
تعداد 20 عدد قرص اکسی متولون را در هاون کاملا پودر کرده و از این پودر مقداری معادل با 25 میلی گرم اکسی متولون را برداشته (239.5 میلی گرم) و به بالن ژوژه 250 میلی لیتری منتقل کنید و در محلول اتانولی سدیم هیدروکساید (0.01m) حل و به حجم برسانیدو در صورت لزوم صاف نمایید. 15 میلی لیتر اول از محلول صاف شده را دور بریزید و از بقیه مقدار 5 میلی لیتر را به بالن ژوژه 50 میلی لیتری منتقل و با محلول اتانولی هیدروکساید (0.01m) رقیق و به حجم برسانید. خوب مخلوط کرده و جذب محلول حاصل را در طول موج 315 nm و با دستگاه اسپکتروسکپی مناسب در سل یک سانتی متری در مقابل بانک محلول اتانولی سدیم هیدروکساید (0.01m) اندازه گیری کنید.
میلی گرم اکسی متولون در هر قرص از فرمول زیر محاسبه میشود.
که در آن:
s= مقدار برداشتی از نمونه برحسب میلی گرم (239.5mg)
w= وزن متوسط قرص ها بر حسب میلی گرم میباشد. (479mg)
547= 1% A برای اکسید متولون در طول موج 315nm میباشد.
Ref: BP.(1998). P:1848
Limits: (45 to 55 mg/tab)
Dissolution برای قرص اکسی متالون
دستگاه و مواد لازم: Apparatus I: 100 rpm
مواد:
1- محلول پربوریک اسید و پتاسیم کلراید (0.2 مول):
مقدار 12.37 گرم از بوریک اسید (H3Bo3) خشک شده در رده ای 120 تا 110 درجه سانتی گراد به مدت یکساعت و مقدار 14.91 گرم از پتاسیم کلراید (KCL) را در آب مقطر حل کنید و با آب مقطر به حجم 1000 میلی لیتر برسانید.
2- محلول NaoH (0.2 مول):
این محلول را از محلول سدیم هیدروکساید نرمال که روش تهیه و استاندارد کردن آن را در صفحه ضمیمه توضیح داده شده است تهیه و دوباره استاندارد کنید.
(روش تهیه: 40cc از سدیم هیدروکساید نرمال برداشته با آب مقطر بدون Co2 به حجم 200 برسانید حال سدیم هیدروکساید 0.2 نرمال خواهیم داشت)
3- محلول بافر برات الکالین Ph=8.5 (0.05 m):
مقدار 500 میلی لیتر از محلول بوریک اسید و پتاسیم کلراید (0.2 مول) را به بالن ژوژه دو لیتری منتقل کرده و مقدار 102 میلی لیتر محلول سدیم هیدروکساید (0.2 مول) به آن بیفزایید و با آب مقطر به حجم برسانید. (Ph این محلول باید 8.5 باشد)
زمان لازم: 45 دقیقه
حجم محلول: 900 میلی لیتر
روش کار:
درصد مقدار C12H32O3 (اکسی متولون) حل شده را به طریقه جذب u.v در طول موج ماکزیمم 313 nm از محلول تحت آزمایش چنانچه لازم باشد با محلول رقیق کنید و با جذب محلول استاندارد با همان غلظت در همان محیط مقایسه کنید. این درصد نباید از75% مقدار ذکر شده بر روی چسب در مدت 45 دقیقه کمتر باشد.
Ref: u.sp/xxIV/P: 1242 (2000)
مصرف این قرص برای بیماری های خاص مثل سرطان و … و باعث ایجاد نیروهای کاذب در بدن میشود بعضی از ورزشکاران از این قرص استفاده می کنند.
روش تهیه Phenol Red Ts:
100 mg فنل سولفات در 100 ml الکل حل کنید اگر کدر بود صاف کنید.
روش تهیه کریستال ویئولت:
0.500mgr کریستال ویئولت دقیقا وزن می کنیم با اسید به حجم 50 می رسانیم.
دستورالعمل کار با دستگاه اسپکتروفتومتر
روش کار:
مطمئن شوید که دکمه power دستگاه در موقعیت off قرار دارد مطمئن شوید که بمحل قرارگیری سل ها خالی میباشد. اسپکتر و فتومتر را به برق وصل کنید.
سوئیچ power دستگاه را در وضعیت on قرار دهید را روی محلول موج مورد نظر تنظیم کنید.
سل را توسط محلول بلانک بشوئید.
سل ها را از محلول بلانک پر کرده و در محل قرار گیری سل ها قرار دهید.
کلید Auto Zero را فشار دهید تا صفحه نمایشگر عدد صفر را نشان دهد. سل مخصوص نمونه را از دستگاه خارج کنید محلول بلانک را خالی کنید.
سل را با محلول نمونه شستشو دهید.
سل را از محلول نمونه پر کنید.
اطراف سل را با دستمال نرم و خشک تمیز کنید.
سل را در محل قرارگیری سل قرار دهید.
درب محفظه سل را ببندید.
عدد صفحه نمایشگر را یادداشت کنید.
1- الف) برای درمان پارکینسون (از جمله واکنشهای اکستراپیرامدیال حاصل از سایر داروها) در افراد مسن که قادر به تحمل داروهای قویتر نمی باشند.
ب) حالتهای خفیف پارکینسون (از جمله موارد ناشی از دارو) در سایر گروههای سنی.
ج) در سایر موارد پارکینسون (از جمله موارد ناشی از اثر دارو) همراه آنتی کولی نرژیک مرکزی به کار میرود.
2- شربت که حاوی کلرور آمونیوم و سیترات سدیم نیز میباشد به عنوان ضد سرفه برای رفع سرفه های ناشی از سرماخوردگی یا آلرژی به کار میرود.
مقدار مصرف:
بزرگسالان: 50-25 میلی گرم 3 تا 4 بار در روز
کودکان: بیش از 9 کیلوگرم وزن: 25-12.5 میلی گرم 3 تا 4 بار درروز (یا 5 میلی گرم برای هر کیلووزن بدن در 24 ساعت). حداکثر دوز روزانه 300 میلی گرم.
شربت برای تسکین سرفه: بزرگسالان هر 4 ساعت 2 قاشق مرباخوری (25 میلی گرم) حداکثر روزانه 8 قاشق مرباخوری.
کودکان 12-6 سال نصف بزرگسالان
کودکان 2 تا 6 سال بالغین.
مواد منع مصرف:
1- کودکان تازه به دنیا آمده و نوزادان نارس.
2- مادران شیرده
3- حساسیت به دیفن هیدرامین یا سایر آنتی هیستامینهای مشابه.
4- در افراد تحت درمان با منوآمین اکسیداز.
5- برای درمان اختلالات دستگاه تحتانی تنفسی از جمله آسم نباید به کار برده شود.
عوارض جانبی:
1- عوارض عمومی: کهیر، بثورات جلدی، شوک آنافیلاکتیک، ازدیاد عرق بدن، خشک شدن دهان و گلو و بینی
2- عوارض قلبی و عروقی: طپش قلب، تاکیکاردی، اکستراسیستول سردرد، پایین آمدن فشار خون.
3- عوارض خونی: انمی همولیتیک، ترومبوسیتوپنی، اگرانولوسیتوز.
4- عوارض سیستم عصبی مرکزی: رخوت، آلودگی، گیجی، عدم هماهنگی، خستگی ، منگی، بیخوابی، هیجان، عصبانیت، لرزش، تحریک پذیری، سرخوشی، مورمور شدن تاری دید، دو بینی، سرگیجه، وزوز در گوش، ورم حاد لابیرنت، یبوست، هیستری، نوریت تشنج.
5- عوارض جهاز گوارشی: بی اشتهایی، تهوع، استفراغ، اسهال، یبوست، ناراحتی اپیگاستر.
6- عوراض سیستم تناسلی – اداراری: تکرر ادرارد، ناراحتی هنگام دفع ادرار، احتباس ادرار و جلو افتادن عادت ماهانه
7- عوارض سیستم تنفسی: غلیظ شدن ترشحات برنش، تنگی سینه، گرفتگی بینی، صدا دار شدن تنفس.
مواد احتیاط
1- در موارد زیر با احتیاط زیاد به کار رود:
گلوکلوم با زاویه باریک، اولسرپپتیک استنوزه، انسداد پیلور، هیپرتروفی علامتی پروستات، انسداد گردن مثانه، انسداد پیلورودئودنال.
2- مصرف در کودکان و نوزادان (بخصوص با دوز زیاد) سبب توهم، تشنج و کم شدن هوشیاری میشود. در کودکان زیر 6 سال باعث هیحان میگردد.
3- به علت اثرات آتروپینی در افراد با سابقه آسم برونشی، ازدیاد فشار داخلی چشم، هیپرتیروئید ناراحتی قلبی و عروقی در نهایت احتیاط مصرف شود.
4- همراه با مضعف های سیستم عصبی مرکزی، الکل و آرامبخشها مصرف نشود.
5- در افراد مسن سبب گیجی، رخوت و خوا آلودگی میشود.
نکات قابل توصیه هنگام نسخه پیچی
1- ممکن است سبب خواب آلودگی شود از این رو از رانندگی و کار با آلاتی که نیاز به هوشیاری کامل دارد خودداری نمایید.
2- ازمصرف الکل، آرامبخشها و مضعف های سیستم عصبی مرکزی خودداری نمایید.
3- از دوز تعیین شده تجاوز نشود.
4- هنگام مسافرت نیم ساعت قبل از حرکت مصرف شود.
5- دور از نور نگهداری شود.
مصرف در بارداری: غیرمجاز
روش نام گذاری داروها
Rimington’s Pharmaceutical Sciences
(16 th Edition, P.P 417-18)
پیشرفت های اخیر در زمینه داروسازی و رشته های وابستهبه آن چنان سرعتی داشته است که گردآوری اطلاعات، طبقه بندی، تخلیص، نگهداری مراجعه و انتشار این اطلاعات نیز خود به رشته ای جداگانه تبدیل شده است.
یکی از مواردی که بنظر میآید اطلاعات پیشاپیش و سریعتر از آنچه دنبالش هستند انبوه میشود اطلاعات موجود در مورد داروهاست. شماره روز افزون داروهای جدید که از دهه 1950 به بعد تهیه شدند کار پی گیری و دنبال کردن و خواندن اطلاعات مربوطه را بیش از پیش مشکل تر کرده است. اگر در نظر بگیریم که یک داروی معین ممکن است چندین نام شیمیایی چندین علامت اختصاری یا کد و دو یا سه نما تجارتی آنهم فقط در یک کشور داشته باشد و اگر درنظر بگیریم که یک داروی معین ممکن است چندین نام شیمیایی، چندین علامت اختصاری یا کد دو یا سه نام تجارتی آنهم فقط در یک کشور داشته باشد و اگر در نظر بگیریم که در کشورهای دیگر بازهم نامهای دیگری داشته باشد آنوقت اشکال در نامگذاری این ترکیبات و لزوم داشتن یک نام غیرتحارتی یا ژنریک بیش از پیش حس میشود. چنین کوششی ازسوی جوامع عملی مختلف بعمل آمده است که یکی از آنها شورای USAN است (State Adopted Names United) که در اینجا ما باختصار به طرز کار و شیوه انتخابی آنها برای نامگذاری داروها می پردازیم.
یک دارو را به نامهای مختلفی میتوان خواند که در اینجا عمده ترین آنها را از نظر میگذرانیم:
نام شیمیایی به ترکیباتی که فرمول شیمیایی مشخص دارند اطلاق میشود. نام شیمیایی مشخصات دقیق و کامل ساختمان یک ترکیب را نشان می دهد.
برای ترکیباتی که دارای منشا گیاهی یا حیوانی هستند توصیف علمی منشاء آنها برحسب نامهای بیوشیمیایی گیاهی ای حیوانی صورت میگیرد. این نام ها اگر چه از نظر علمی دقیق هستند معمولا طولانی و مشکل بوده و برای پزشک، داروساز و رشته های وابسته زیاد مفید نیستند.
از آنجاییکه استفاده روزمره از نام شیمیایی در ازمایشگاههای تحقیقاتی زیاد مناسب نیست و گاهی تلفظ آن سخت و گاهی نام شیمیایی طولانی است گاهی در این آزیشگاهها داروها را باید با کد که عبارتست از حروف یا اعداد و یا ترکیب هر دو نشان می دهند. معمولا این نوع نامگذاری بردو نوع است ترکیب چند حروف و چند عدد مانند TH4128 که نام الفافنیل بوتیرامید است که برای درمان هیپرکلسترولمی بکار میرود این نام معمولا حروف نام پژوهشگر یا آزمایشگاه تحقیقاتی است. شماره ها نیز اختیاری است و معمولا شماره ردیف ترکیب شیمیایی یا شماره ترکیب شیمیایی است که در فهرست سنتز یا تحقیق قرار دارد. گاهی هم این نام از چند حرف تشکیل یافته است که از نام خود دارو گرفته شد است مانند I.D.U که معرف یدوکسوریدین یک داروی ضد ویروس است. این کدها معمولا در مراحل اولیه تحقیق بر روی ترکیب های شیمیایی انتخاب میشود و پس از پیدا شدن یک نام مناسب برای دارو کنار گذاشته میشود اما گاهی نیز راه خود را در مجلات علمی باز می کنند. این کدها ارزش علمی ندارند زیرا هیچگونه اطلاعی در مورد داروها ارائه نمی دهند.
در برخی از موارد در مراحل تحقیق خود پژوهشگران نام های دیگری بر روی ترکیبات می گذارند. این نام ها همان نام های غیراختصاصی یا باصطلاح نام معمولی هستند سازمان های دستاندرکار نامگذاری های شیمیایی استفاده از نام این داروها را توصیه نمی کنند زیرا این نامها معمولا بطور اتفاقی و بدون توجه به رابطه داروی جدید با داروهای پیش از آن نامگذاری شده اند.
اگر پس از طی تمام مراحل متعدد تحقیق یک دارو وارد بازار شود یک نام تحارتی برای آن انتخاب میشود این نام نشان دهنده ماهیت دارو نیست بلکه بیشتر نماینده کارخانه وئ یا نوع فرمولاسیون آن است.
نامهای تجارتی معمولا نامهای به ثبت رسیده هستند و به دارندگان حق امتیاز آن تعلق دارند و کس دیگجری نمی تواند از آنها استفاده کند. علاوه بر آن هنگامی که یک دارو توسط چند تولیدکننده وارد بازار میشود کدام می توانند نام تحارتی متفاوتی برای فرمولاسیون مورد ظنر تهیه کنند. نامهای تجارتی معمولا مختصر، چشمگیر و بخاطر سپردن آنها آسان است. این نامها معمولا ساختمان شیمیایی و یا خاصیت فارماکولوژیکی داروها را نشان نمی دهد.
اگر چه هریک از این نام ها خصوصیت ویژه ای دارند هیچیک بحدی که برای همه قابل استفاده و مفید باشد ساد مختصرو جامع نیست.
نام غیراختصاصی بهمین منظور ابداع شده است. این نام مختصر معنی دار و برای همه قابل استفاده است. نام غیراختصاصی را نام ژنریک هم می گویند. در اینحا نام غیراختصاصی را بیشتر برای نامهای بکار می بریم که با توافق کارخانه سازنده و سازمانهای علمی نامگذاری داروها تهیه شده اند.
مطالعه اسامی غیراختصاصی داروهای مورد استفاده عدم هماهنگی و نامگذاری بیقاعده آنها را آشکار می سازد. بسیاری از این نام ها پیش از وضع اصول و قواعد جدید نامگذاری بیقاعده آنها را آشکار می سازد بسیاری از این نام ها پیش از وضع اصول و قواعد جدید نامگذاری، انتخاب و بکار برده شدند. بنابراین نامهای کنونی مخلوطی است از نامهای مورد استفاده قدیمی و نامهای جدید.
در بسیاری از موارد نامهای نارسا، نادرست و غیرمعمول داروها ناشی از مختصر کردن نام شیمیائی و تبدیل آن به نام ژنریک برای نشان دادن خاصیت شیمیائی دارو بوده است در زمانی که از این روش برای نامگذاری استفاده شد ساختمان شیمیایی داروهای شناخته شده آنقدرها پیچیده نبود. با کشف داروهای جدید و شناسایی ساختمان آنها و عرضه داروهای پیچیده تر نوشتن نام غیراختصاصی داروها یادگرفتن و حتی تلفظ آن ها مشکل تر میگردید.
این نام ها علاوه بر مشکلاتی که ایجاد میکرد مورد انتقاد بود زیرا نمی توانستند اطلاعات مفیدی در اختیار هیچکس جز دست اندارکاران و متخصصین سنتز و فرموله کردن داروها بگذارند.
اسامی غیراختصاصی معمولا مورد استفاده داروسازان، پزشکان و سایر افراد وابسته به رشته پزشگی است. ساختمان شیمیایی یک ملکول با تغییرات جدیدی که برای تهیه داروهای جدید در آن انجام شده است مورد نیاز یک پزشک نیست. او بیشتر به دانستن فارما کولوژی و خواص دارو علاقمند است . بنابراین دوباره باید تاکید کرد که نامهای غیراختصاصی باید به شیوه ای انتخاب شوند که برای کسانی که بیش از همه با آنها سروکار دارند یعنی دست اندارکاران حرفه پزشکی، قابل استفاده باشند.
یک نام غیراختصاصی مناسب باید مشخص باشد و پیشوند و پسوندهای تکراری نداشته باشد صدها دارو با پیشوند و پسوند دی di، meth، کلر chlor، اکسی oxy و فن phen وجود دارد.
دسته بندی | معماری |
بازدید ها | 0 |
فرمت فایل | ppt |
حجم فایل | 21504 کیلو بایت |
تعداد صفحات فایل | 53 |
پاورپوینت تحلیل بنای فرهنگسرای فرشچیان اصفهان
معرفی کلی فضا
این بنا در خیابان توحید اصفهان مجاور زاینده رود واقع می باشد و توسط فرهاد احمدی در سال 67 طراحی شده ولی بدلایلی در سال 85 به بهره برداری رسیده!
سبک این بنا الهام گرفته از معماری سنتی ایران و روم باستان است.